MSST-Net: A Multi-Scale Adaptive Network for Building Extraction from Remote Sensing Images Based on Swin Transformer

被引:44
|
作者
Yuan, Wei [1 ,2 ]
Xu, Wenbo [3 ]
机构
[1] Chengdu Univ, Sch Architecture & Civil Engn, Chengdu 610106, Peoples R China
[2] Chengdu Univ, Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu 610106, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
关键词
deep learning; remote sensing; transformer; semantic segmentation; multi-scale adaptive; SEGMENTATION;
D O I
10.3390/rs13234743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The segmentation of remote sensing images by deep learning technology is the main method for remote sensing image interpretation. However, the segmentation model based on a convolutional neural network cannot capture the global features very well. A transformer, whose self-attention mechanism can supply each pixel with a global feature, makes up for the deficiency of the convolutional neural network. Therefore, a multi-scale adaptive segmentation network model (MSST-Net) based on a Swin Transformer is proposed in this paper. Firstly, a Swin Transformer is used as the backbone to encode the input image. Then, the feature maps of different levels are decoded separately. Thirdly, the convolution is used for fusion, so that the network can automatically learn the weight of the decoding results of each level. Finally, we adjust the channels to obtain the final prediction map by using the convolution with a kernel of 1 x 1. By comparing this with other segmentation network models on a WHU building data set, the evaluation metrics, mIoU, F1-score and accuracy are all improved. The network model proposed in this paper is a multi-scale adaptive network model that pays more attention to the global features for remote sensing segmentation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale Attention
    Zhang, Jian
    Pan, Bin
    Zhang, Yu
    Liu, Zhangle
    Zheng, Xin
    REMOTE SENSING, 2022, 14 (21)
  • [22] Building detection algorithm in multi-scale remote sensing images based on attention mechanism
    Ding, Wei
    Zhang, Li
    Yang, Guangliang
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1717 - 1728
  • [23] ASF-Net: Adaptive Screening Feature Network for Building Footprint Extraction From Remote-Sensing Images
    Chen, Jun
    Jiang, Yuxuan
    Luo, Linbo
    Gong, Wenping
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [24] ASF-Net: Adaptive Screening Feature Network for Building Footprint Extraction From Remote-Sensing Images
    Chen, Jun
    Jiang, Yuxuan
    Luo, Linbo
    Gong, Wenping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Multi-scale Cross Dual Attention Network for Building Change Detection in Remote Sensing Images
    Zhang J.
    Yan Z.
    Ma S.
    Journal of Geo-Information Science, 2023, 25 (12) : 2487 - 2500
  • [26] Multi-Scale Bilateral Spatial Direction-Aware Network for Cropland Extraction Based on Remote Sensing Images
    Hou, Weimin
    Wang, Yanxia
    Su, Jia
    Hou, Yanli
    Zhang, Ming
    Shang, Yan
    IEEE ACCESS, 2023, 11 : 109997 - 110009
  • [27] Multi-featured multi-scale combination of high-resolution remote sensing images for building extraction
    Niu, Yuhan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023, 9 (01)
  • [28] Road extraction from remote sensing images based on a multi-scale asymmetric dual attention mechanism
    Qu, Shenming
    Liu, Suchen
    Han, Fengyu
    Xie, Yuan
    REMOTE SENSING LETTERS, 2024, 15 (08) : 751 - 761
  • [29] Building Extraction from Remote Sensing Images Based on Improved U-Net
    Jin Shu
    Guan Mo
    Bian Yuchan
    Wang Shulei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [30] LRAD-Net: An Improved Lightweight Network for Building Extraction From Remote Sensing Images
    Liu, Jiabin
    Huang, Huaigang
    Sun, Hanxiao
    Wu, Zhifeng
    Luo, Renbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 675 - 687