System error variance tuning in state-space models

被引:0
|
作者
Mantovan, P [1 ]
Pastore, A [1 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Stat, I-30125 Venice, Italy
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The multivariate dynamic regression model is a particular specification of the dynamic linear model. For this model, we propose a recursive equation for the estimation of the system error variance matrix. The solution can be used when more observation axe available at each state of the system. In these cases, the algorithm allows to define a recursive procedure for the estimate of both the state vector (the regression coefficients) and the other hyperparameters of the model. The performances of the proposed method are evaluated by means of Monte Carlo experiments.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [21] State-space seismic cone minimum variance deconvolution
    Baziw, Erick
    GEOTECHNICAL AND GEOPHYSICAL SITE CHARACTERIZATION VOLS 1 AND 2, 2004, : 835 - 842
  • [22] Generalised minimum variance control state-space design
    Silveira, A. S.
    Coelho, A. A. R.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (15): : 1709 - 1715
  • [23] Bayesian Filtering for High-Dimensional State-Space Models With State Partition and Error Compensation
    Ke Li
    Shunyi Zhao
    Biao Huang
    Fei Liu
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (05) : 1239 - 1249
  • [24] Bayesian Filtering for High-Dimensional State-Space Models With State Partition and Error Compensation
    Li, Ke
    Zhao, Shunyi
    Huang, Biao
    Liu, Fei
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (05) : 1239 - 1249
  • [25] USING THE FILTERED CARMA AND CARIMA MODELS FOR STATE-SPACE SELF-TUNING CONTROL
    LAM, KP
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (12) : 2461 - 2470
  • [26] System resiliency quantification using non-state-space and state-space analytic models
    Ghosh, Rahul
    Kim, DongSeong
    Trivedi, Kishor S.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 116 : 109 - 125
  • [27] Granger causality for state-space models
    Barnett, Lionel
    Seth, Anil K.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [28] ON GIBBS SAMPLING FOR STATE-SPACE MODELS
    CARTER, CK
    KOHN, R
    BIOMETRIKA, 1994, 81 (03) : 541 - 553
  • [29] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [30] DERIVATION OF STATE-SPACE MODELS OF CRYSTALLIZERS
    DEWOLF, S
    JAGER, J
    VISSER, B
    KRAMER, HJM
    BOSGRA, OH
    ACS SYMPOSIUM SERIES, 1990, 438 : 144 - 158