Variations on a theme of Jost and Pais

被引:37
|
作者
Gesztesy, Fritz [1 ]
Mitrea, Marius [1 ]
Zinchenko, Maxim [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Fredholm determinants; non-self-adjoint operators; multi-dimensional schrodinger operators; Dirichlet-to-Neumann maps;
D O I
10.1016/j.jfa.2007.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the extent to which a variant of a celebrated formula due to Jost and Pais, which reduces the Fredholm perturbation determinant associated with the Schrodinger operator on a half-line to a simple Wronski determinant of appropriate distributional solutions of the underlying Schrodinger equation, generalizes to higher dimensions. In this multi-dimensional extension the half-line is replaced by an open set Omega subset of R-n, n is an element of N, n >= 2, where Omega has a compact, nonempty boundary partial derivative Omega satisfying certain regularity conditions. Our variant involves ratios of perturbation determinants corresponding to Dirichlet and Neumann boundary conditions on a partial derivative Omega and invokes the corresponding Dirichlet-to-Neumann map. As a result, we succeed in reducing a certain ratio of modified Fredholm perturbation determinants associated with operators in L-2(Omega; d(n)x), n is an element of N, to modified Fredholm determinants associated with operators in L-2(partial derivative Omega; d(n-l) sigma), n >= 2. Applications involving the Birman-Schwinger principle and eigenvalue counting functions are discussed. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 448
页数:50
相关论文
共 50 条
  • [1] GENERALIZATIONS OF JOST-PAIS THEOREM FOR NONLOCAL POTENTIALS
    SINGH, Y
    WARKE, CS
    CANADIAN JOURNAL OF PHYSICS, 1971, 49 (08) : 1029 - &
  • [2] A Jost-Pais-Type Reduction of Fredholm Determinants and Some Applications
    Carey, Alan
    Gesztesy, Fritz
    Potapov, Denis
    Sukochev, Fedor
    Tomilov, Yuri
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 79 (03) : 389 - 447
  • [3] A Jost–Pais-Type Reduction of Fredholm Determinants and Some Applications
    Alan Carey
    Fritz Gesztesy
    Denis Potapov
    Fedor Sukochev
    Yuri Tomilov
    Integral Equations and Operator Theory, 2014, 79 : 389 - 447
  • [4] Multi-dimensional versions of a determinant formula due to Jost and Pais
    Gesztesy, F.
    Mitrea, M.
    Zinchenko, M.
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 59 (03) : 365 - 377
  • [5] COMMENTS ON OFF-ENERGY-SHELL GENERALIZATION OF JOST-PAIS THEOREM
    TALUKDAR, B
    DAS, U
    CHATTARJI, D
    PHYSICAL REVIEW C, 1978, 18 (04): : 1917 - 1918
  • [6] COMMENTS ON OFF-ENERGY-SHELL GENERALIZATION OF JOST-PAIS THEOREM - REPLY
    WARKE, CS
    SRIVASTAVA, MK
    PHYSICAL REVIEW C, 1978, 18 (04): : 1919 - 1919
  • [7] Variations on a Theme
    Stack, Peter S.
    AMERICAN JOURNAL OF MEDICINE, 2022, 135 (07): : 925 - 926
  • [8] 'VARIATIONS ON A THEME'
    FINNELL, M
    NEW YORK QUARTERLY, 1978, 23 : 56 - 56
  • [9] VARIATIONS ON A THEME
    NOLTE, AE
    JOURNAL OF SCHOOL HEALTH, 1968, 38 (07) : 425 - 430
  • [10] Variations on a theme
    Gullett, PA
    LAB ANIMAL, 1999, 28 (10) : 16 - 16