A Jost-Pais-Type Reduction of Fredholm Determinants and Some Applications

被引:6
|
作者
Carey, Alan [1 ]
Gesztesy, Fritz [2 ]
Potapov, Denis [3 ]
Sukochev, Fedor [3 ]
Tomilov, Yuri [4 ,5 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] UNSW, Sch Math & Stat, Kensington, NSW 2052, Australia
[4] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
[5] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
基金
澳大利亚研究理事会;
关键词
Fredholm determinants; semi-separable kernels; Jost functions; perturbation determinants; SCHRODINGER-OPERATORS; INFINITE DETERMINANTS; INDEX;
D O I
10.1007/s00020-014-2150-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the analog of semi-separable integral kernels in of the type where , and for a.e. , and such that F (j) (center dot) and G (j) (center dot) are uniformly measurable, and with and , j = 1, 2, complex, separable Hilbert spaces. Assuming that K(center dot, center dot) generates a trace class operator K in , we derive the analog of the Jost-Pais reduction theory that succeeds in proving that the Fredholm determinant (I - alpha K), , naturally reduces to appropriate Fredholm determinants in the Hilbert spaces (and ). Explicit applications of this reduction theory to Schrodinger operators with suitable bounded operator-valued potentials are made. In addition, we provide an alternative approach to a fundamental trace formula first established by Pushnitski which leads to a Fredholm index computation of a certain model operator.
引用
收藏
页码:389 / 447
页数:59
相关论文
共 50 条
  • [1] A Jost–Pais-Type Reduction of Fredholm Determinants and Some Applications
    Alan Carey
    Fritz Gesztesy
    Denis Potapov
    Fedor Sukochev
    Yuri Tomilov
    Integral Equations and Operator Theory, 2014, 79 : 389 - 447
  • [2] Evans functions, Jost functions, and Fredholm determinants
    Gesztesy, Fritz
    Latushkin, Yuri
    Makarov, Konstantin A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 186 (03) : 361 - 421
  • [3] Evans Functions, Jost Functions, and Fredholm Determinants
    Fritz Gesztesy
    Yuri Latushkin
    Konstantin A. Makarov
    Archive for Rational Mechanics and Analysis, 2007, 186 : 361 - 421
  • [4] On Dirichlet-to-Neumann Maps and Some Applications to Modified Fredholm Determinants
    Gesztesy, Fritz
    Mitrea, Marius
    Zinchenko, Maxim
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 191 - +
  • [5] On Dirichlet-to-Neumann Maps, Nonlocal Interactions, and Some Applications to Fredholm Determinants
    Fritz Gesztesy
    Marius Mitrea
    Maxim Zinchenko
    Few-Body Systems, 2010, 47 : 49 - 64
  • [6] On Dirichlet-to-Neumann Maps, Nonlocal Interactions, and Some Applications to Fredholm Determinants
    Gesztesy, Fritz
    Mitrea, Marius
    Zinchenko, Maxim
    FEW-BODY SYSTEMS, 2010, 47 (1-2) : 49 - 64
  • [7] Some new nonlinear Volterra-Fredholm-type discrete inequalities and their applications
    Ma, Qing-Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (02) : 451 - 466
  • [8] SOME RESULTS OF FREDHOLM ALTERNATIVE TYPE FOR OPERATORS OF λJφ - S FORM WITH APPLICATIONS
    Meghea, Irina
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2010, 72 (04): : 21 - 32
  • [9] ON SOME NEW NONLINEAR VOLTERRA-FREDHOLM TYPE DISCRETE INEQUALITIES AND ITS APPLICATIONS
    Kendre, Subhash
    Kale, Nagesh
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 437 - 453
  • [10] On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their applications
    Haidong Liu
    Journal of Inequalities and Applications, 2018