Ginzburg-Landau-type theory of antiphase boundaries in polytwinned structures

被引:11
|
作者
Vaks, VG [1 ]
机构
[1] Kurchatov Inst, Russian Res Ctr, Moscow 123182, Russia
基金
俄罗斯基础研究基金会;
关键词
64.70.Kb; 61.50.Ks; 05.70.Fh;
D O I
10.1134/1.1371061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conventional Ginzburg-Landau theory of interphase boundaries is generalized to values of order parameters that are not small, with application to polytwinned structures characteristic of cubic-tetragonal-type phase transitions. Explicit expressions for the structure and energy of antiphase boundaries via the functions entering the free-energy functional are given. A peculiar dependence of equilibrium orientations of antiphase boundaries on the interaction type is predicted, and it qualitatively agrees with the available experimental data. (C) 2001 MAIK "Nauka/ Interperiodica".
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [21] Ginzburg-Landau-Type Multiphase Field Model for Competing fcc and bcc Nucleation
    Toth, G. I.
    Morris, J. R.
    Granasy, L.
    PHYSICAL REVIEW LETTERS, 2011, 106 (04)
  • [22] Analysis of Ginzburg-Landau-type models of surfactant-assisted liquid phase separation
    Toth, Gyula I.
    Kvamme, Bjorn
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [23] Nonlinear Ginzburg-Landau-type approach to quantum dissipation -: art. no. 026110
    López, JL
    PHYSICAL REVIEW E, 2004, 69 (02): : 026110 - 1
  • [24] The Backward Problem for Ginzburg-Landau-Type Equation (vol 41, pg 143, 2016)
    Dang Duc Trong
    Bui Thanh Duy
    Nguyen Dang Minh
    ACTA MATHEMATICA VIETNAMICA, 2015, 40 (04) : 747 - 747
  • [25] The first 180 Lyapunov exponents for two-dimensional complex Ginzburg-Landau-type equation
    Kozitskiy, S. B.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84 (84):
  • [26] Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals
    Valdinoci, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 574 : 147 - 185
  • [27] GINZBURG-LANDAU APPROACH IN THE THEORY OF POLYMER STRUCTURES
    PANYUKOV, SV
    JETP LETTERS, 1992, 55 (10) : 608 - 611
  • [28] A GINZBURG-LANDAU TYPE THEORY OF QUARK CONFINEMENT
    SUZUKI, T
    PROGRESS OF THEORETICAL PHYSICS, 1988, 80 (06): : 929 - 934
  • [29] Ginzburg–Landau-type theory of spin superconductivity
    Zhi-qiang Bao
    X.C. Xie
    Qing-feng Sun
    Nature Communications, 4
  • [30] LANDAU-GINZBURG TYPE THEORY OF QUARK CONFINEMENT
    PATKOS, A
    NUCLEAR PHYSICS B, 1975, 97 (02) : 352 - 364