Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates

被引:28
|
作者
Rosenberger, M. [1 ]
Hessler, S. [1 ]
Belle, S. [1 ]
Schmauss, B. [2 ]
Hellmann, R. [1 ]
机构
[1] Univ Appl Sci Aschaffenburg, Appl Laser & Photon Grp, D-63743 Aschaffenburg, Germany
[2] Univ Erlangen Nurnberg, Inst Microwaves & Photon, D-91058 Erlangen, Germany
关键词
Polymer planar Bragg grating; Cyclo-olefin copolymer; Single UV writing step; Integrated optics; Planar strain sensor; OPTICAL-FIBER; SENSOR;
D O I
10.1016/j.sna.2014.10.040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the fabrication of polymer planar waveguides with inscribed Bragg gratings in TOPAS employing an efficient UV based single writing step technique using excimer laser. Phase shifting Mach-Zehnder interferometry indicates an UV induced increase of the refractive index in TOPAS of 6 x 10(-4) and a modification depth of about 30 mu m, respectively. The planar Bragg grating structures in the cyclo-olefin copolymer are characterized by a high reflectivity of about 93% and are studied with respect to their potential in optical waveguide sensing, namely temperature and strain sensing. While the Bragg reflection shows almost no cross sensitivity against humidity, it exhibits a spectral blue shift with increasing temperature of -6.5 pm/degrees C after multiple thermal annealing cycles. Compressive and tensile strain measurements reveal a sensitivity of 0.70 pm/mu epsilon. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 50 条
  • [21] Fabrication of Bragg Gratings in Flat Silica Substrates Using the Femtoprint Device and Use for Sensing
    de Lara, M. Tunon
    Amez-Droz, L.
    Chah, K.
    Lambert, P.
    Collette, C.
    Caucheteur, C.
    LASER PLUS PHOTONICS FOR ADVANCED MANUFACTURING, 2024, 13005
  • [22] Modeling, Fabrication, and Characterization of Planar Inductors on YIG Substrates
    Haddad, Elias
    Martin, Christian
    Joubert, Charles
    Allard, Bruno
    Soueidan, Maher
    Lazar, Mihai
    Buttay, Cyril
    Payet-Gervy, Beatrice
    ADVANCES IN INNOVATIVE MATERIALS AND APPLICATIONS, 2011, 324 : 294 - +
  • [23] Improved fabrication accuracy of Bragg gratings
    Brown, JD
    Mehta, A
    Hockel, H
    Johnson, EG
    Micromachining Technology for Micro-Optics and Nano-Optics III, 2005, 5720 : 139 - 147
  • [24] Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
    Rosenberger, Manuel
    Eisenbeil, Waltraud
    Schmauss, Bernhard
    Hellmann, Ralf
    SENSORS, 2015, 15 (02): : 4264 - 4272
  • [25] Hydrostatic pressure sensitivity of standard polymer fibre Bragg gratings and etched polymer fibre Bragg gratings
    Bhowmik, Kishore
    Rajan, Ginu
    Ambikairajah, Eliathamby
    Peng, Gang-Ding
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [26] Humidity insensitive TOPAS polymer fiber Bragg grating sensor
    Yuan, Wu
    Khan, Lutful
    Webb, David J.
    Kalli, Kyriacos
    Rasmussen, Henrik K.
    Stefani, Alessio
    Bang, Ole
    OPTICS EXPRESS, 2011, 19 (20): : 19731 - 19739
  • [27] Spiral Planar-Waveguide Bragg Gratings
    Lin, C.
    Jacobs, E. W.
    Rodgers, J. S.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XIII, 2009, 7218
  • [28] Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings
    Min, Rui
    Ortega, Beatriz
    Broadway, Christian
    Caucheteur, Christophe
    Woyessa, Getinet
    Bang, Ole
    Antunes, Paulo
    Marques, Carlos
    OPTICS EXPRESS, 2018, 26 (26): : 34655 - 34664
  • [29] Polymer Bragg gratings for telecom applications
    Zou, H
    Beeson, KW
    Ferm, PM
    DESIGN AND FABRICATION OF PLANAR OPTICAL WAVEGUIDE DEVICES AND MATERIALS, 2002, 4805 : 68 - 78
  • [30] Polymer Bragg gratings filled to order
    Hogan, Hank
    Photonics Spectra, 2005, 39 (06)