Hidden Markov models for stochastic thermodynamics

被引:37
|
作者
Bechhoefer, John [1 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
加拿大自然科学与工程研究理事会;
关键词
nonequilibrium thermodynamics; feedback; information theory; hidden Markov models; INFORMATION; TUTORIAL;
D O I
10.1088/1367-2630/17/7/075003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formalism of state estimation and hidden Markov models can simplify and clarify the discussion of stochastic thermodynamics in the presence of feedback and measurement errors. After reviewing the basic formalism, we use it to shed light on a recent discussion of phase transitions in the optimized response of an information engine, for which measurement noise serves as a control parameter. The HMM formalism also shows that the value of additional information displays a maximum at intermediate signal-to-noise ratios. Finally, we discuss how systems open to information flow can apparently violate causality; the HMM formalism can quantify the performance gains due to such violations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] COMPARATIVE ANALYSIS OF TRIANGULAR FUZZY HIDDEN MARKOV MODELS AND TRADITIONAL HIDDEN MARKOV MODELS
    Vyshnavi, M.
    Muthukumar, M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2025, 92 (02) : 171 - 189
  • [22] STRUCTURAL HIDDEN MARKOV MODELS BASED ON STOCHASTIC CONTEXT-FREE GRAMMARS
    Bouchaffra, D.
    Tan, J.
    CONTROL AND INTELLIGENT SYSTEMS, 2007, 35 (03)
  • [23] Maximum-likelihood stochastic-transformation adaptation of hidden Markov models
    Diakoloukas, VD
    Digalakis, VV
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (02): : 177 - 187
  • [24] Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models
    Sidrow, Evan
    Heckman, Nancy
    Bouchard-Cote, Alexandre
    Fortune, Sarah M. E.
    Trites, Andrew W.
    Auger-Methe, Marie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025, 34 (01) : 222 - 238
  • [25] A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models
    Wong, Stephen
    Gardner, Andrew B.
    Krieger, Abba M.
    Litt, Brian
    JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (03) : 2525 - 2532
  • [26] Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages
    Ng, Yin Cheng
    Chilinski, Pawel
    Silva, Ricardo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [27] A new, stochastic method based on Hidden Markov Models to transformer differential protection
    Jazebi, S.
    Vahidi, B.
    Hosseinian, S. H.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL I, 2008, : 179 - 184
  • [28] Ergodicity of hidden Markov models
    Di Masi, GB
    Stettner, L
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (04) : 269 - 296
  • [29] Hamptonese and hidden Markov models
    Stamp, M
    Le, E
    NEW DIRECTIONS AND APPLICATIONS IN CONTROL THEORY, 2005, 321 : 367 - 378
  • [30] Hidden Markov models for bioinformatics
    Sisson, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2004, 167 : 194 - 195