Hidden Markov models for stochastic thermodynamics

被引:37
|
作者
Bechhoefer, John [1 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
加拿大自然科学与工程研究理事会;
关键词
nonequilibrium thermodynamics; feedback; information theory; hidden Markov models; INFORMATION; TUTORIAL;
D O I
10.1088/1367-2630/17/7/075003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formalism of state estimation and hidden Markov models can simplify and clarify the discussion of stochastic thermodynamics in the presence of feedback and measurement errors. After reviewing the basic formalism, we use it to shed light on a recent discussion of phase transitions in the optimized response of an information engine, for which measurement noise serves as a control parameter. The HMM formalism also shows that the value of additional information displays a maximum at intermediate signal-to-noise ratios. Finally, we discuss how systems open to information flow can apparently violate causality; the HMM formalism can quantify the performance gains due to such violations.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Stochastic complexities of hidden Markov models
    Yamazaki, K
    Watanabe, S
    2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 179 - 188
  • [2] Stochastic observation hidden Markov models
    Mitchell, CD
    Harper, MP
    Jamieson, LH
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 617 - 620
  • [3] Stochastic Variational Inference for Hidden Markov Models
    Foti, Nicholas J.
    Xu, Jason
    Laird, Dillon
    Fox, Emily B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] Stochastic volatility models as hidden Markov models and statistical applications
    Genon-Catalot, V
    Jeantheau, T
    Larédo, C
    BERNOULLI, 2000, 6 (06) : 1051 - 1079
  • [5] Evaluation of relevance of stochastic parameters on Hidden Markov Models
    Robles, B.
    Avila, M.
    Duculty, F.
    Vrignat, P.
    Kratz, F.
    ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 428 - 435
  • [6] Stochastic Gradient MCMC Methods for Hidden Markov Models
    Ma, Yi-An
    Foti, Nicholas J.
    Fox, Emily B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [7] Algebraic geometry and stochastic complexity of hidden Markov models
    Yamazaki, K
    Watanabe, S
    NEUROCOMPUTING, 2005, 69 (1-3) : 62 - 84
  • [8] Conditional likelihood estimators for hidden Markov models and stochastic volatility models
    Genon-Catalot, V
    Jeantheau, T
    Laredo, C
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (02) : 297 - 316
  • [9] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [10] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 795 - 796