Stereo Visual-Inertial Odometry With Multiple Kalman Filters Ensemble

被引:58
|
作者
Liu, Yong [1 ]
Xiong, Rong [1 ]
Wang, Yue [1 ]
Huang, Hong [1 ]
Xie, Xiaojia [1 ]
Liu, Xiaofeng [1 ]
Zhang, Gaoming [1 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Kalman filter; multi-sensor fusion; pose estimation; robot vision; visual-inertial odometry; LOCALIZATION; MOTION;
D O I
10.1109/TIE.2016.2573765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a stereo visualinertial odometry algorithm assembled with three separated Kalman filters, i.e., attitude filter, orientation filter, and position filter. Our algorithm carries out the orientation and position estimation with three filters working on different fusion intervals, which can provide more robustness even when the visual odometry estimation fails. In our orientation estimation, we propose an improved indirect Kalman filter, which uses the orientation error space represented by unit quaternion as the state of the filter. The performance of the algorithm is demonstrated through extensive experimental results, including the benchmark KITTI datasets and some challenging datasets captured in a rough terrain campus.
引用
收藏
页码:6205 / 6216
页数:12
相关论文
共 50 条
  • [41] Monocular Visual-Inertial Odometry with Planar Regularities
    Chen, Chuchu
    Geneva, Patrick
    Peng, Yuxiang
    Lee, Woosik
    Huang, Guoquan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6224 - 6231
  • [42] EqVIO: An Equivariant Filter for Visual-Inertial Odometry
    van Goor, Pieter
    Mahony, Robert
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (05) : 3567 - 3585
  • [43] An online temporal calibration method for nonlinear optimization-based stereo visual-inertial odometry
    Cao, Ziyu
    Zhu, Yanze
    Yang, Jianhua
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2023, 237 (07) : 1187 - 1194
  • [44] Invariant Cubature Kalman Filtering-Based Visual-Inertial Odometry for Robot Pose Estimation
    Sang, Xiaoyue
    Li, Jingchao
    Yuan, Zhaohui
    Yu, Xiaojun
    Zhang, Jingqin
    Zhang, Jianrui
    Yang, Pengfei
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (23) : 23413 - 23422
  • [45] Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback
    Bloesch, Michael
    Burri, Michael
    Omari, Sammy
    Hutter, Marco
    Siegwart, Roland
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (10): : 1053 - 1072
  • [46] UAV Visual-Inertial Dynamics (VI-D) Odometry using Unscented Kalman Filter
    Omotuyi, Oyindamola
    Kumar, Manish
    [J]. IFAC PAPERSONLINE, 2021, 54 (20): : 814 - 819
  • [47] A Self-Supervised, Differentiable Kalman Filter for Uncertainty-Aware Visual-Inertial Odometry
    Wagstaff, Brandon
    Wise, Emmett
    Kelly, Jonathan
    [J]. 2022 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2022, : 1388 - 1395
  • [48] Optimization-Based, Simplified Stereo Visual-inertial Odometry With High-Accuracy Initialization
    Yang, Guang
    Zhao, Long
    Mao, Jianing
    Liu, Xiao
    [J]. IEEE ACCESS, 2019, 7 : 39054 - 39068
  • [49] Depth Enhanced Visual-Inertial Odometry Based on Multi-State Constraint Kalman Filter
    Pang, Fumin
    Chen, Zichong
    Pu, Li
    Wang, Tianmiao
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1761 - 1767
  • [50] Dense Visual-Inertial Odometry for Tracking of Aggressive Motions
    Ling, Yonggen
    Shen, Shaojie
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 576 - 583