Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem

被引:15
|
作者
Chadha, Naresh M. [1 ]
Kopteva, Natalia [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Semilinear reaction-diffusion; Singular perturbation; A posteriori error estimate; Maximum norm; No mesh aspect ratio condition; Finite differences; Layer-adapted mesh; ANISOTROPIC MESH ADAPTATION; FINITE-ELEMENT-METHOD;
D O I
10.1007/s10444-010-9163-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed semilinear reaction-diffusion problem in the unit cube, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio condition is imposed. This result is obtained by combining (i) sharp bounds on the Green's function of the continuous differential operator in the Sobolev W (1,1) and W (2,1) norms and (ii) a special representation of the residual in terms of an arbitrary current mesh and the current computed solution. Numerical results on a priori chosen meshes are presented that support our theoretical estimate.
引用
收藏
页码:33 / 55
页数:23
相关论文
共 50 条