Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem

被引:0
|
作者
T. Linss
机构
[1] Technische Universität Dresden,Institut für Numerische Mathematik
来源
BIT Numerical Mathematics | 2007年 / 47卷
关键词
reaction-diffusion problems; singular perturbation; layer-adapted meshes;
D O I
暂无
中图分类号
学科分类号
摘要
A non-monotone FEM discretization of a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers is considered. The method is shown to be maximum-norm stable although it is not inverse monotone. Both a priori and a posteriori error bounds in the maximum norm are derived. The a priori result can be used to deduce uniform convergence of various layer-adapted meshes proposed in the literature. Numerical experiments complement the theoretical results.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 50 条