Universal Classical-Quantum Superposition Coding and Universal Classical-Quantum Multiple Access Channel Coding

被引:0
|
作者
Hayashi, Masahito [1 ,2 ,3 ,4 ]
Cai, Ning [5 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[3] Int Quantum Acad SIQA, Shenzhen 518048, Peoples R China
[4] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[5] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
关键词
Codes; Decoding; Compounds; Receivers; Error probability; Channel coding; Channel capacity; Universal code; Schur duality; multiple access channel; broadcast channel with degraded message sets; compound channel; packing lemma; classical-quantum channel; BROADCAST CHANNELS; ERROR EXPONENTS; CAPACITY; CODES; COMPOUND; THEOREM;
D O I
10.1109/TIT.2021.3131575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We derive universal classical-quantum superposition coding and universal classical-quantum multiple access channel coding by using generalized packing lemmas for the type method. Using our classical-quantum universal superposition code, we establish the capacity region of a classical-quantum compound broadcast channel with degraded message sets. Our universal classical-quantum multiple access channel codes have two types of codes. One is a code with joint decoding and the other is a code with separate decoding. It is not so easy to construct a former code that universally achieves general points of the capacity region beyond corner points. First, we construct the latter code that universally achieves general points of the capacity region. Then, converting the latter code to the former coder, we construct the above desired code with the former type.
引用
收藏
页码:1822 / 1850
页数:29
相关论文
共 50 条
  • [31] Capacities of Gaussian Classical-Quantum Channels
    Holevo, Alexander S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 176 - 180
  • [32] On the Classical-Quantum Relation of Constants of Motion
    Belmonte, Fabian
    Veloz, Tomas
    [J]. FRONTIERS IN PHYSICS, 2018, 6
  • [33] Moderate Deviations for Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 296 - 300
  • [34] Classical-quantum advantage boundary for enzymes
    McCardle, Kaitlin
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (10): : 620 - 620
  • [35] Polar Codes for Classical-Quantum Channels
    Wilde, Mark M.
    Guha, Saikat
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1175 - 1187
  • [36] Classical capacity of classical-quantum arbitrarily varying channels
    Ahlswede, Rudolf
    Blinovsky, Vladimir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 526 - 533
  • [37] Capacity theorems for quantum multiple-access channels: Classical-quantum and quantum-quantum capacity regions
    Yard, Jon
    Hayden, Patrick
    Devetak, Igor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (07) : 3091 - 3113
  • [38] THE CLASSICAL-QUANTUM BORDER - LASER SHARP
    BOREHAM, BW
    [J]. PHYSICS TODAY, 1994, 47 (07) : 13 - 13
  • [39] Statistical complexity and classical-quantum frontier
    Branada, R.
    Pennini, F.
    Plastino, A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 511 : 18 - 26
  • [40] Commitment Capacity of Classical-Quantum Channels
    Hayashi, Masahito
    Warsi, Naqueeb Ahmad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5083 - 5099