LIE GROUPS IN QUASI-POISSON GEOMETRY AND BRAIDED HOPF ALGEBRAS

被引:0
|
作者
Severa, Pavol [1 ]
Valach, Fridrich [1 ]
机构
[1] Univ Geneva, Sect Math, Geneva, Switzerland
来源
DOCUMENTA MATHEMATICA | 2017年 / 22卷
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the notion of Poisson-Lie groups and Lie bialgebras from Poisson to g-quasi-Poisson geometry and provide a quantization to braided Hopf algebras in the corresponding Drinfeld category. The basic examples of these g-quasi-Poisson Lie groups are nilpotent radicals of parabolic subgroups. We also provide examples of moment maps in this new context coming from moduli spaces of flat connections on surfaces.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [31] Central braided Hopf algebras
    Schauenburg, Peter
    HOPF ALGEBRAS AND GENERALIZATIONS, 2007, 441 : 117 - 147
  • [32] Generalized braided Hopf algebras
    Zhong-jian Lu
    Xiao-li Fang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 105 - 113
  • [33] Braided Hopf algebras obtained from coquasitriangular Hopf algebras
    Beattie, Margaret
    Bulacu, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 115 - 160
  • [34] Integrals for braided Hopf algebras
    Bespalov, Y
    Kerler, T
    Lyubashenko, V
    Turaev, V
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (02) : 113 - 164
  • [35] Braided Hopf Algebras Obtained from Coquasitriangular Hopf Algebras
    Margaret Beattie
    Daniel Bulacu
    Communications in Mathematical Physics, 2008, 282 : 115 - 160
  • [36] Generalized braided Hopf algebras
    Lu Zhong-jian
    Fang Xiao-li
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) : 105 - 113
  • [37] The Weak Graded Lie 2-Algebra of Multiplicative Forms on a Quasi-Poisson Groupoid
    Chen, Zhuo
    Lang, Honglei
    Liu, Zhangju
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)
  • [38] CHARACTER GROUPS OF HOPF ALGEBRAS AS INFINITE-DIMENSIONAL LIE GROUPS
    Bogfjellmo, Geir
    Dahmen, Rafael
    Schmeding, Alexander
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (05) : 2101 - 2155
  • [39] Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves
    B. Enriquez
    Selecta Mathematica, 2003, 9 (1) : 1 - 61
  • [40] Sobolev algebras on Lie groups and noncommutative geometry
    Arhancet, Cedric
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (01) : 451 - 500