Pixel-wise orthogonal decomposition for color illumination invariant and shadow-free image

被引:19
|
作者
Qu, Liangqiong [1 ,2 ]
Tian, Jiandong [1 ]
Han, Zhi [1 ]
Tang, Yandong [1 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
OPTICS EXPRESS | 2015年 / 23卷 / 03期
关键词
INTRINSIC IMAGES; REMOVAL;
D O I
10.1364/OE.23.002220
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose a novel, effective and fast method to obtain a color illumination invariant and shadow-free image from a single outdoor image. Different from state-of-the-art methods for shadow-free image that either need shadow detection or statistical learning, we set up a linear equation set for each pixel value vector based on physically-based shadow invariants, deduce a pixel-wise orthogonal decomposition for its solutions, and then get an illumination invariant vector for each pixel value vector on an image. The illumination invariant vector is the unique particular solution of the linear equation set, which is orthogonal to its free solutions. With this illumination invariant vector and Lab color space, we propose an algorithm to generate a shadow-free image which well preserves the texture and color information of the original image. A series of experiments on a diverse set of outdoor images and the comparisons with the state-of-the-art methods validate our method. (C) 2015 Optical Society of America
引用
收藏
页码:2220 / 2239
页数:20
相关论文
共 50 条
  • [31] Pixel-wise weighted composition of wavelet planes for satellite image fusion
    Kim G.
    [J]. Kim, Gibak (imkgb27@ssu.ac.kr), 1600, Korean Institute of Electrical Engineers (69): : 152 - 157
  • [32] Grape bunch detection using a pixel-wise classification in image processing
    Gonzalez-Marquez, M. R.
    Brizuela, C. A.
    Martinez-Rosas, M. E.
    Cervantes, H.
    [J]. PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [33] Image-level to Pixel-wise Labeling: From Theory to Practice
    Sun, Tiezhu
    Zhang, Wei
    Wang, Zhijie
    Ma, Lin
    Jie, Zequn
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 928 - 934
  • [34] Pixel-wise visible image registration based on deep neural network
    Huang C.
    Cheng J.
    Pan X.
    Song N.
    Liu B.
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (03): : 522 - 532
  • [35] Blur Resistant Image Authentication Method with Pixel-wise Tamper Localization
    Bausys, R.
    Kriukovas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (03) : 35 - 38
  • [36] Pixel-wise decay parameter adaption for nonlocal means image denoising
    Zhan, Yi
    Ding, Mingyue
    Zhang, Xuming
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (04)
  • [37] Pixel-wise conditioned generative adversarial networks for image synthesis and completion
    Ruffino, Cyprien
    Herault, Romain
    Laloy, Eric
    Gasso, Gilles
    [J]. NEUROCOMPUTING, 2020, 416 : 218 - 230
  • [38] Nighttime Single Image Dehazing via Pixel-Wise Alpha Blending
    Yu, Teng
    Song, Kang
    Miao, Pu
    Yang, Guowei
    Yang, Huan
    Chen, Chenglizhao
    [J]. IEEE ACCESS, 2019, 7 : 114619 - 114630
  • [39] Always-On CMOS Image Sensor Pixel Design for Pixel-Wise Binary Coded Exposure
    Luo, Yi
    Mirabbasi, Shahriar
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017,
  • [40] A Dead-time Free Global Shutter CMOS Image Sensor with in-pixel LOFIC and ADC using Pixel-wise Connections
    Sugo, Hidetake
    Wakashima, Shunichi
    Kuroda, Rihito
    Yamashita, Yuichiro
    Sumi, Hirofumi
    Wang, Tzu-Jui
    Chou, Po-Sheng
    Hsu, Ming-Chieh
    Sugawa, Shigetoshi
    [J]. 2016 IEEE SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), 2016,