Sensing Single Molecule Penetration into Nanopores: Pushing the Time Resolution to the Diffusion Limit

被引:19
|
作者
Bodrenko, Igor V. [1 ]
Wang, Jiajun [2 ]
Salis, Samuele [1 ]
Winterhalter, Mathias [2 ]
Ceccarelli, Matteo [1 ]
机构
[1] Univ Cagliari, Dept Phys, SP Monserrato Sestu Km 0-700, I-09042 Cagliari, Italy
[2] Jacobs Univ, Campus Ring 1, D-28759 Bremen, Germany
来源
ACS SENSORS | 2017年 / 2卷 / 08期
关键词
nanopores; substrate binding; ion-current fluctuations; kinetic parameters; Markov-state model; submicrosecond gating; ACCURATE DATA PROCESS; ION CHANNELS; MEMBRANE; NOISE; KINETICS; BINDING; TRANSLOCATION; FLUCTUATIONS; COEFFICIENTS; PERMEATION;
D O I
10.1021/acssensors.7b00311
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To quantify small molecule penetration into and eventually permeation through nanopores, we applied an improved excess-noise analysis of the ion current fluctuation caused by entering molecules. The kinetic parameters of substrate entry and exit are derived from a two-state Markov model, analyzing the substrate concentration dependence of the average ion current and its variance. Including filter corrections allows one to detect the transition rates beyond the cutoff frequency, f(c), of the instrumental ion-current filter. As an application of the method, we performed an analysis of the single-channel ion current of Meropenem, an antibiotic of the carbapenem family, interacting with OmpF, the major general outer membrane channel of Escherichia coli bacteria. At 40 C we detected the residence time of Meropenem inside OmpF of about 500 ns-more than 2 orders of magnitude smaller than f(c)(-1) and close to the diffusion limit of few hundred nanoseconds. We also have established theoretical limit conditions under which the substrate-induced channel blockages can be detected and suggest that submicrosecond-scale gating kinetic parameters are accessible with existing experimental equipment.
引用
收藏
页码:1184 / 1190
页数:7
相关论文
共 50 条
  • [1] Single-molecule sensing with nanopores
    Muthukumar, Murugappan
    Plesa, Calin
    Dekker, Cees
    PHYSICS TODAY, 2015, 68 (08) : 40 - 46
  • [2] Single molecule sensing by nanopores and nanopore devices
    Gu, Li-Qun
    Shim, Ji Wook
    ANALYST, 2010, 135 (03) : 441 - 451
  • [3] Biological nanopores for single-molecule sensing
    Mayer, Simon Finn
    Cao, Chan
    Dal Peraro, Matteo
    ISCIENCE, 2022, 25 (04)
  • [4] DNA Nanostructures for Single Molecule Protein Sensing with Nanopores
    Bell, Nicholas A. W.
    Kong, Jinglin
    Keyser, Ulrich F.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 654A - 654A
  • [5] High Spatial Resolution of Ultrathin Covalent Organic Framework Nanopores for Single-Molecule DNA Sensing
    Xing, Xiao-Lei
    He, Zi-Chuan
    Ahmed, Saud Asif
    Liao, Qiaobo
    Guo, Lin-Ru
    Ren, Shibin
    Xi, Kai
    Ji, Li-Na
    Wang, Kang
    Xia, Xing-Hua
    ANALYTICAL CHEMISTRY, 2022, 94 (27) : 9851 - 9855
  • [6] Pushing the limit of the distributed Brillouin sensors for the sensing length and the spatial resolution
    Bao, Xiaoyi
    Liang, Hao
    Dong, Yongkang
    Li, Wenhai
    Li, Yun
    Chen, Liang
    FIBER OPTIC SENSORS AND APPLICATIONS VII, 2010, 7677
  • [7] Electrical Pulse Fabricated Graphene Nanopores for Single Molecule Sensing
    Kuan, Aaron
    Lu, Bo
    Golovchenko, Jene
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 175A - 175A
  • [8] Chemically tailoring nanopores for single-molecule sensing and glycomics
    James T. Hagan
    Brian S. Sheetz
    Y.M. Nuwan D.Y. Bandara
    Buddini I. Karawdeniya
    Melissa A. Morris
    Robert B. Chevalier
    Jason R. Dwyer
    Analytical and Bioanalytical Chemistry, 2020, 412 : 6639 - 6654
  • [9] Chemically tailoring nanopores for single-molecule sensing and glycomics
    Hagan, James T.
    Sheetz, Brian S.
    Bandara, V. M. Nuwan D. Y.
    Karawdeniya, Buddini, I
    Morris, Melissa A.
    Chevalier, Robert B.
    Dwyer, Jason R.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (25) : 6639 - 6654
  • [10] Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing
    Bafna, Jayesh A.
    Soni, Gautam V.
    PLOS ONE, 2016, 11 (06):