High Spatial Resolution of Ultrathin Covalent Organic Framework Nanopores for Single-Molecule DNA Sensing

被引:21
|
作者
Xing, Xiao-Lei [1 ]
He, Zi-Chuan [1 ]
Ahmed, Saud Asif [1 ]
Liao, Qiaobo [1 ]
Guo, Lin-Ru [1 ]
Ren, Shibin [2 ]
Xi, Kai [1 ]
Ji, Li-Na [3 ]
Wang, Kang [1 ]
Xia, Xing-Hua [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
[2] Taizhou Univ, Sch Pharmaceut & Mat Engn, Taizhou 317000, Peoples R China
[3] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE;
D O I
10.1021/acs.analchem.2c01708
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ultrathin nanosheets of two-dimensional covalent organic frameworks covered a quartz nanopipette and then acted as a nanopore device for single-molecule DNA sensing. Our results showed that a single DNA homopolymer as short as 6 bases could be detected. The dwell times of 30-mer DNA homopolymers were obviously longer than the times of 10- or 6-mer ones. For different bases, poly(dA)(6) showed the slowest transport speed (similar to 595 mu s/base) compared with cytosine (similar to 355 mu s/base) in poly(dC)(6) and thymine (similar to 220 mu s/base) in poly(dT)(6). Such translocation speeds are the slowest ever reported in two-dimensional material-based nanopores. Poly(dA)(6) also showed the biggest current blockade (94.74 pA) compared with poly(dC)(6) (79.54 pA) and poly(dT)(6) (71.41 pA). However, the present difference in blockade current was not big enough to distinguish the four DNA bases. Our study exhibits the shortest single DNA molecules that can be detected by COF nanopores at the present stage and lights the way for DNA sequencing based on solid-state nanopores.
引用
收藏
页码:9851 / 9855
页数:5
相关论文
共 50 条
  • [1] Sequence-Dependent Single-Molecule DNA Sensing Using Covalent Organic Framework Nanopores
    Guo, Linru
    Xing, Xiao-Lei
    Liao, Qiaobo
    Xu, Haocheng
    Li, Wang
    Ding, Xin-Lei
    Xia, Xing-Hua
    Ji, Li-Na
    Xi, Kai
    Wang, Kang
    ACS NANO, 2024, 18 (38) : 26382 - 26390
  • [2] Single-molecule sensing with nanopores
    Muthukumar, Murugappan
    Plesa, Calin
    Dekker, Cees
    PHYSICS TODAY, 2015, 68 (08) : 40 - 46
  • [3] Biological nanopores for single-molecule sensing
    Mayer, Simon Finn
    Cao, Chan
    Dal Peraro, Matteo
    ISCIENCE, 2022, 25 (04)
  • [4] High spatial resolution nanoslit SERS for single-molecule nucleobase sensing
    Chen, Chang
    Li, Yi
    Kerman, Sarp
    Neutens, Pieter
    Willems, Kherim
    Cornelissen, Sven
    Lagae, Liesbet
    Stakenborg, Tim
    Van Dorpe, Pol
    NATURE COMMUNICATIONS, 2018, 9
  • [5] High spatial resolution nanoslit SERS for single-molecule nucleobase sensing
    Chang Chen
    Yi Li
    Sarp Kerman
    Pieter Neutens
    Kherim Willems
    Sven Cornelissen
    Liesbet Lagae
    Tim Stakenborg
    Pol Van Dorpe
    Nature Communications, 9
  • [6] Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
    Bell, Nicholas A. W.
    Keyser, Ulrich F.
    NATURE NANOTECHNOLOGY, 2016, 11 (07) : 645 - +
  • [7] Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
    Bell N.A.W.
    Keyser U.F.
    Nature Nanotechnology, 2016, 11 (7) : 645 - 651
  • [8] Chemically tailoring nanopores for single-molecule sensing and glycomics
    James T. Hagan
    Brian S. Sheetz
    Y.M. Nuwan D.Y. Bandara
    Buddini I. Karawdeniya
    Melissa A. Morris
    Robert B. Chevalier
    Jason R. Dwyer
    Analytical and Bioanalytical Chemistry, 2020, 412 : 6639 - 6654
  • [9] Chemically tailoring nanopores for single-molecule sensing and glycomics
    Hagan, James T.
    Sheetz, Brian S.
    Bandara, V. M. Nuwan D. Y.
    Karawdeniya, Buddini, I
    Morris, Melissa A.
    Chevalier, Robert B.
    Dwyer, Jason R.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (25) : 6639 - 6654
  • [10] Lifetime of glass nanopores in a PDMS chip for single-molecule sensing
    Alawami, Mohammed F.
    Boskovic, Filip
    Zhu, Jinbo
    Chen, Kaikai
    Sandler, Sarah E.
    Keyser, Ulrich F.
    ISCIENCE, 2022, 25 (05)