Sparse Deep Neural Network Graph Challenge

被引:32
|
作者
Kepner, Jeremy [1 ,2 ,3 ]
Alford, Simon [2 ]
Gadepally, Vijay [1 ,2 ]
Jones, Michael [1 ]
Milechin, Lauren [4 ]
Robinett, Ryan [3 ]
Samsi, Sid [1 ]
机构
[1] MIT Lincoln Lab, Supercomp Ctr, Lexington, MA 02421 USA
[2] MIT Comp Sci & AI Lab, Cambridge, MA 02139 USA
[3] MIT Math Dept, Cambridge, MA 02142 USA
[4] MIT Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
关键词
D O I
10.1109/hpec.2019.8916336
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The proposed Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective of emerging sparse AI systems. The Sparse DNN Challenge is based on a mathematically well-defined DNN inference computation and can be implemented in any programming environment. Sparse DNN inference is amenable to both vertex-centric implementations and array-based implementations (e.g., using the GraphBLAS.org standard). The computations are simple enough that performance predictions can be made based on simple computing hardware models. The input data sets are derived from the MNIST handwritten letters. The surrounding I/O and verification provide the context for each sparse DNN inference that allows rigorous definition of both the input and the output. Furthermore, since the proposed sparse DNN challenge is scalable in both problem size and hardware, it can be used to measure and quantitatively compare a wide range of present day and future systems. Reference implementations have been implemented and their serial and parallel performance have been measured. Specifications, data, and software are publicly available at GraphChallenge.org.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Wide and Deep Graph Neural Network With Distributed Online Learning
    Gao, Zhan
    Gama, Fernando
    Ribeiro, Alejandro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3862 - 3877
  • [32] Narrow the Input Mismatch in Deep Graph Neural Network Distillation
    Zhou, Qiqi
    Shen, Yanyan
    Chen, Lei
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3581 - 3592
  • [33] Scalable Causal Graph Learning through a Deep Neural Network
    Xu, Chenxiao
    Huang, Hao
    Yoo, Shinjae
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1853 - 1862
  • [34] Joint pairwise graph embedded sparse deep belief network for fault diagnosis
    Yang, Jie
    Bao, Weimin
    Liu, Yanming
    Li, Xiaoping
    Wang, Junjie
    Niu, Yue
    Li, Jin
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 99
  • [35] The graph neural networking challenge
    Suárez-Varela, José
    Ferriol-Galmés, Miquel
    López, Albert
    Almasan, Paul
    Bernárdez, Guillermo
    Pujol-Perich, David
    Rusek, Krzysztof
    Bonniot, Loïck
    Neumann, Christoph
    Schnitzler, François
    Taïani, François
    Happ, Martin
    Maier, Christian
    Du, Jia Lei
    Herlich, Matthias
    Dorfinger, Peter
    Hainke, Nick Vincent
    Venz, Stefan
    Wegener, Johannes
    Wissing, Henrike
    Wu, Bo
    Xiao, Shihan
    Barlet-Ros, Pere
    Cabellos-Aparicio, Albert
    [J]. Computer Communication Review, 2021, 51 (03): : 9 - 16
  • [36] Neural Network Approximation of Graph Fourier Transform for Sparse Sampling of Networked Dynamics
    Pagani, Alessio
    Wei, Zhuangkun
    Silva, Ricardo
    Guo, Weisi
    [J]. ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
  • [37] Lightweight method of deep neural network based on deep sparse low rank decomposition
    Cheng, Qi
    Li, Jie
    Gao, Xiao-Li
    Tang, Pei-Ren
    Sheng, Liang-Rui
    Wang, Wei
    [J]. Kongzhi yu Juece/Control and Decision, 2023, 38 (03): : 751 - 758
  • [38] A Computing Efficient Hardware Architecture for Sparse Deep Neural Network Computing
    Zhang, Yanwen
    Ouyang, Peng
    Yin, Shouyi
    Zhang, Youguang
    Zhao, Weisheng
    Wei, Shaojun
    [J]. 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2018, : 1261 - 1263
  • [39] Deep convolutional neural network and sparse least-squares migration
    Liu, Zhaolun
    Chen, Yuqing
    Schuster, Gerard
    [J]. Geophysics, 2020, 85 (04):
  • [40] Recognizing Brain States Using Deep Sparse Recurrent Neural Network
    Wang, Han
    Zhao, Shijie
    Dong, Qinglin
    Cui, Yan
    Chen, Yaowu
    Han, Junwei
    Xie, Li
    Liu, Tianming
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (04) : 1058 - 1068