Estimating crowd density with Minkowski fractal dimension

被引:85
|
作者
Marana, AN [1 ]
Costa, LD [1 ]
Lotufo, RA [1 ]
Velastin, SA [1 ]
机构
[1] UNESP, Rio Claro, SP, Brazil
关键词
D O I
10.1109/ICASSP.1999.757602
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The estimation of the number of people in an area under surveillance is very important for the problem of crowd monitoring. When an area reaches an occupation level greater than the projected one, people's safety can be in danger. This paper describes a new technique for crowd density estimation based on Minkowski fractal dimension. Fractal dimension has been widely used to characterize data texture in a large number of physical and biological sciences. The results of our experiments show that fractal dimension can also be used to characterize levels of people congestion in images of crowds. The proposed technique is compared with a statistical and a spectral technique, in a test study of nearly 300 images of a specific area of the Liverpool Street Railway Station, London, UK. Results obtained in this test study are presented.
引用
收藏
页码:3521 / 3524
页数:4
相关论文
共 50 条
  • [41] Estimating the fractal dimension value of valley based on DEM data
    Li, Jingzhong
    Liu, Jianwei
    Yang, Zelong
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2014, 39 (11): : 1277 - 1281
  • [42] New Methods for Estimating the Dimension Fractal Introducing the Artificial Intelligence
    A. Zerroug
    D. Schoëvaërt-Brossault
    S. Rebiai
    [J]. Acta Applicandae Mathematicae, 2010, 109 : 1043 - 1051
  • [43] New Methods for Estimating the Dimension Fractal Introducing the Artificial Intelligence
    Zerroug, A.
    Schoevaert-Brossault, D.
    Rebiai, S.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) : 1043 - 1051
  • [44] Detection of the noise-induced transition by estimating the fractal dimension
    Ikeda, N
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 662 - 665
  • [45] A WARNING ABOUT STANDARD ERRORS WHEN ESTIMATING THE FRACTAL DIMENSION
    REEVE, R
    [J]. COMPUTERS & GEOSCIENCES, 1992, 18 (01) : 89 - 91
  • [46] A novel approach to estimated Boulingand-Minkowski fractal dimension from complex networks
    de Sa, Luiz Alberto Pereira
    Zielinski, Kallil M. C.
    Rodrigues, Erick Oliveira
    Backes, Andre R.
    Florindo, Joao B.
    Casanova, Dalcimar
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157
  • [47] Application of the Minkowski-Bouligand fractal dimension for the differential diagnosis of thyroid follicular neoplasias
    Ferreira, Rita C.
    de Matos, Patricia S.
    Adam, Randall L.
    Leite, Neucimar J.
    Metze, Konradin
    [J]. CELLULAR ONCOLOGY, 2006, 28 (5-6) : 331 - 333
  • [48] Alveolar process fractal dimension and postcranial bone density
    Southard, TE
    Southard, KA
    Lee, A
    [J]. ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTICS, 2001, 91 (04): : 486 - 491
  • [49] Fractal dimension as a tool for judging the quality of the residual density
    Meindl, Kathrin
    Henn, Julian
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S239 - S239
  • [50] Retinal Vasculature Fractal Dimension Measures Vessel Density
    Ab Hamid, Fadilah
    Azemin, Mohd Zulfaezal Che
    Salam, Adzura
    Aminuddin, Amilia
    Daud, Norsyazwani Mohd
    Zahari, Ilyanoon
    [J]. CURRENT EYE RESEARCH, 2016, 41 (06) : 823 - 831