An accessible implementation of interest rate models with Markov-switching

被引:32
|
作者
Zhou, Nanxin [2 ]
Mamon, Rogemar [1 ]
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[2] Bank Canada, Funds Management & Banking Dept, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Markov chain; Vasicek model; Cox-Ingersoll-Ross model; Black-Karasinski model; Quasi-maximum likelihood method; Parameter estimation; Regime-switching; Model validation; TERM STRUCTURE; VOLATILITY;
D O I
10.1016/j.eswa.2011.09.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We examine the performance of interest rate models with regime-switching feature through a straightforward implementation. In particular, three short-rate models, the Vasicek, CIR and Black-Karasinski models, are extended to capture the switching of economic regimes using a finite-state Markov chain in discrete time. The Markov chain modulates the parameters of the model. We illustrate numerically that the resulting extended models are capable of reproducing various shapes of the yield curve. A quasi-maximum likelihood method based on James and Webber (2000) is employed to estimate the parameters of the regime-switching models. We demonstrate the implementation using actual financial datasets of Canadian yield rates. The numerical results show that under some model validation metrics, the two-state regime-switching models are more flexible, have better forecasting performance and provide better fit than the models without the regime-switching characteristic. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:4679 / 4689
页数:11
相关论文
共 50 条
  • [21] Determinacy and classification of Markov-switching rational expectations models
    Cho, Seonghoon
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2021, 127
  • [22] Methods for measuring expectations and uncertainty in Markov-switching models
    Bianchi, Francesco
    [J]. JOURNAL OF ECONOMETRICS, 2016, 190 (01) : 79 - 99
  • [23] Misspecified structural change, threshold, and Markov-switching models
    Carrasco, M
    [J]. JOURNAL OF ECONOMETRICS, 2002, 109 (02) : 239 - 273
  • [24] Optimal policy in Markov-switching rational expectations models
    Blake, Andrew P.
    Zampolli, Fabrizio
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (10): : 1626 - 1651
  • [25] Markov-switching BILINEAR - GARCH models: Structure and estimation
    Bibi, Abdelouahab
    Ghezal, Ahmed
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 307 - 323
  • [26] Markov-Switching GARCH Models in R: The MSGARCH Package
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    Trottier, Denis-Alexandre
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (04):
  • [27] Markov-switching dynamic factor models in real time
    Camacho, Maximo
    Perez-Quiros, Gabriel
    Poncela, Pilar
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) : 598 - 611
  • [28] Moments, shocks and spillovers in Markov-switching VAR models
    Kole, Erik
    van Dijk, Dick
    [J]. JOURNAL OF ECONOMETRICS, 2023, 236 (02)
  • [29] Markov-switching mixed-frequency VAR models
    Foroni, Claudia
    Guerin, Pierre
    Marcellino, Massimiliano
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) : 692 - 711
  • [30] Temporal aggregation of Markov-switching financial return models
    Chan, Wai-Sum
    Zhang, Li-Xin
    Cheung, Siu Hung
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (03) : 359 - 383