Hardness of approximation for vertex-connectivity network-design problems

被引:0
|
作者
Kortsarz, G [1 ]
Krauthgamer, R
Lee, JR
机构
[1] Rutgers State Univ, Dept Comp Sci, Camden, NJ 08102 USA
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Int Comp Sci Inst, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the survivable network design problem SNDP, the goal is to find a minimum-cost subgraph satisfying certain connectivity requirements. We study the vertex-connectivity variant of SNDP in which the input specifies, for each pair. of vertices, a required number of vertex-disjoint paths connecting them. We give the first lower bound on the approximability of SNDP, showing that the problem admits no efficient 2(log1-epsilonn) ratio approximation for any fixed epsilon > 0 unless NP subset of or equal to DTIME(n(polylog(n))). We also show hardness of approximation results for several important special cases of SNDP, including constant factor hardness for the k-vertex connected spanning subgraph problem (k-VCSS) and for the vertex-connectivity augmentation problem, even when the edge costs are severely restricted.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 50 条
  • [31] On cyclic vertex-connectivity of Cartesian product digraphs
    Da Huang
    Zhao Zhang
    [J]. Journal of Combinatorial Optimization, 2012, 24 : 379 - 388
  • [32] Network Design for Vertex Connectivity
    Chakraborty, Tanmoy
    Chuzhoy, Julia
    Khanna, Sanjeev
    [J]. STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 167 - 176
  • [33] On cyclic vertex-connectivity of Cartesian product digraphs
    Huang, Da
    Zhang, Zhao
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 379 - 388
  • [34] Cyclic vertex-connectivity of Cartesian product graphs
    Qin, Dejin
    Tian, Yingzhi
    Chen, Laihuan
    Meng, Jixiang
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2020, 35 (01) : 81 - 90
  • [35] Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems
    R. Ravi
    M. V. Marathe
    S. S. Ravi
    D. J. Rosenkrantz
    H. B. Hunt III
    [J]. Algorithmica, 2001, 31 : 58 - 78
  • [36] An approximation algorithm for the minimum weight vertex-connectivity problem in complete graphs with sharpened triangle inequality
    Ferrante, A
    Parente, M
    [J]. THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2003, 2841 : 137 - 149
  • [37] An approximation algorithm for the minimum weight vertex-connectivity problem in complete graphs with sharpened triangle inequality
    Ferrante, Alessandro
    Parente, Mimmo
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2003, 2841 : 137 - 149
  • [38] The vertex-connectivity of a distance-regular graph
    Brouwer, Andries E.
    Koolen, Jack H.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (03) : 668 - 673
  • [39] Lower bounds on the vertex-connectivity of digraphs and graphs
    Hellwig, A
    Volkmann, L
    [J]. INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 41 - 46
  • [40] Sharp spectral bounds for the vertex-connectivity of regular graphs
    Zhang, Wenqian
    Wang, Jianfeng
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)