Verification in incomplete argumentation frameworks

被引:41
|
作者
Baumeister, Dorothea [1 ]
Neugebauer, Daniel [1 ]
Rothe, Joerg [1 ]
Schadrack, Hilmar [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Informat, D-40225 Dusseldorf, Germany
关键词
Abstract argumentation; Argumentation framework; Incomplete knowledge; Verification; Computational complexity; AGGREGATION; COMPLEXITY; DIVISION; DYNAMICS; ATTACK;
D O I
10.1016/j.artint.2018.08.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of expressing incomplete knowledge in abstract argumentation frameworks originally introduced by Dung [26] In applications, incomplete argumentation frameworks may arise as intermediate states in an elicitation process, or when merging different beliefs about an argumentation framework's state, or in cases where complete information cannot be obtained. We consider two specific models of incomplete argumentation frameworks, one focusing on attack incompleteness and the other on argument incompleteness, and we also provide a general model of incomplete argumentation framework that subsumes both specific models. In these three models, we study the computational complexity of variants of the verification problem with respect to six common semantics of argumentation frameworks: the conflict-free, admissible, stable, complete, grounded, and preferred semantics. We provide a full complexity map covering all three models and these six semantics. Our main result shows that the complexity of verifying the preferred semantics rises from coNP- to Sigma(p)(2)-completeness when allowing uncertainty about either attacks or arguments, or both. (C) 2018 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [31] Probabilistic Argumentation with Incomplete Information
    Hunter, Anthony
    Thimm, Matthias
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 1033 - +
  • [32] Handling ignorance in argumentation: Semantics of partial argumentation frameworks
    Cayrol, C.
    Devred, C.
    Lagasquie-Schiex, M. C.
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 259 - +
  • [33] Labeled bipolar argumentation frameworks
    Escanuela Gonzalez M.G.
    Budan M.C.D.
    Simari G.I.
    Simari G.R.
    Journal of Artificial Intelligence Research, 2021, 70 : 1557 - 1636
  • [34] Instantiating Metalevel Argumentation Frameworks
    Young, Anthony P.
    Kokciyan, Nadin
    Sassoon, Isabel
    Modgil, Sanjay
    Parsons, Simon
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 97 - 108
  • [35] Godel Fuzzy Argumentation Frameworks
    Wu, Jiachao
    Li, Hengfei
    Oren, Nir
    Norman, Timothy J.
    COMPUTATIONAL MODELS OF ARGUMENT, 2016, 287 : 447 - 458
  • [36] Extended Explanatory Argumentation Frameworks
    Dauphin, Jeremie
    Cramer, Marcos
    THEORY AND APPLICATIONS OF FORMAL ARGUMENTATION, TAFA 2017, 2018, 10757 : 86 - 101
  • [37] Argumentation Frameworks with Justified Attacks
    Dyrkolbotn, Sjur K.
    Pedersen, Truls
    DEONTIC LOGIC AND NORMATIVE SYSTEMS, 2016, : 49 - 63
  • [38] Abstract argumentation scheme frameworks
    Atkinson, Katie
    Bench-Capon, Trevor
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, 2008, 5253 : 220 - 234
  • [39] Labeled Bipolar Argumentation Frameworks
    Escanuela Gonzalez, Melisa G.
    Budan, Maximiliano C. D.
    Simari, Gerardo, I
    Simari, Guillermo R.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 70 : 1557 - 1636
  • [40] Prudent semantics for argumentation frameworks
    Coste-Marquis, S
    Devred, C
    Marquis, P
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 568 - 572