Contextual clustering for analysis of functional MRI data

被引:25
|
作者
Salli, E
Aronen, HJ
Savolainen, S
Korvenoja, A
Visa, A
机构
[1] Helsinki Univ Technol, Biomed Engn Lab, FIN-02015 Espoo, Finland
[2] Univ Helsinki, Cent Hosp, Dept Radiol, FIN-00029 Helsinki, Finland
[3] Univ Kuopio, Dept Clin Radiol, FIN-70211 Kuopio, Finland
[4] Univ Helsinki, Cent Hosp, Dept Lab Med, FIN-00029 Helsinki, Finland
[5] Univ Helsinki, Cent Hosp, BioMag Lab, FIN-00029 Helsinki, Finland
[6] Tampere Univ Technol, Signal Proc Lab, FIN-33101 Tampere, Finland
关键词
clustering; functional magnetic resonance imaging (fMRI); hypothesis testing; segmentation; statistical parametric map;
D O I
10.1109/42.925293
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a contextual clustering procedure for statistical parametric maps (SPM) calculated from time varying three-dimensional images, The algorithm can be used for the detection of neural activations from functional magnetic resonance images (fMRI). An important characteristic of SPM is that the intensity distribution of background (nonactive area) is known whereas the distributions of activation areas are not, The developed contextual clustering algorithm divides an SPM into background and activation areas so that the probability of detecting false activations by chance is controlled, i.e., hypothesis testing is performed. Unlike the much used voxel-by-voxel testing, neighborhood information is utilized, an important difference. This is achieved by using a Markov random field prior and iterated conditional modes (ICM) algorithm. However, unlike in the conventional use of ICM algorithm, the classification is based only on the distribution of background. The results from our simulations and human fMRI experiments using visual stimulation demonstrate that a better sensitivity is achieved with a given specificity in comparison to the voxel-by-voxel thresholding technique. The algorithm is computationally efficient and can be used to detect and delineate objects from a noisy background in other applications.
引用
收藏
页码:403 / 414
页数:12
相关论文
共 50 条
  • [1] Level set based clustering for analysis of functional MRI data
    Bathula, D. R.
    Papademetris, X.
    Duncan, J. S.
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 416 - 419
  • [2] Multiresolution fuzzy clustering of functional MRI data
    Buerki, M
    Lovblad, KO
    Oswald, H
    Nirkko, AC
    Stein, P
    Kiefer, C
    Schroth, G
    [J]. NEURORADIOLOGY, 2003, 45 (10) : 691 - 699
  • [3] Multiresolution fuzzy clustering of functional MRI data
    M. Buerki
    K. O. Lovblad
    H. Oswald
    A. C. Nirkko
    P. Stein
    C. Kiefer
    G. Schroth
    [J]. Neuroradiology, 2003, 45 : 691 - 699
  • [4] Ellipsoidal support vector clustering for functional MRI analysis
    Wang, Defeng
    Shi, Lin
    Yeung, Daniel S.
    Tsang, Eric C. C.
    Heng, Pheng Ann
    [J]. PATTERN RECOGNITION, 2007, 40 (10) : 2685 - 2695
  • [5] The Statistical Analysis of Functional MRI Data
    Smart, Trevor
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2010, 173 : 272 - 273
  • [6] Text data clustering by contextual graphs
    Ciesielski, Krzysztof
    Klopotek, Mieczyslaw A.
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2006, 4265 : 65 - 76
  • [7] A regularized clustering approach to brain parcellation from functional MRI data
    Dillon, Keith
    Wang, Yu-Ping
    [J]. WAVELETS AND SPARSITY XVII, 2017, 10394
  • [8] A Region Homogeneity Approach to Overcome the Ill-Balanced Data Problem in Functional MRI Clustering Analysis
    Monir, Syed Muhammad G.
    Siyal, Mohammed Yakoob
    [J]. 2009 2ND INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES (ISABEL 2009), 2009, : 422 - 427
  • [9] Cluster analysis of muscle functional MRI data
    Damon, BM
    Wigmore, DM
    Ding, ZH
    Gore, JC
    Kent-Braun, JA
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2003, 95 (03) : 1287 - 1296
  • [10] Independent Component Analysis of Functional MRI Data
    Nath, Malaya Ku
    Sahambi, J. S.
    [J]. 2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 1094 - 1099