A regularized clustering approach to brain parcellation from functional MRI data

被引:2
|
作者
Dillon, Keith [1 ]
Wang, Yu-Ping [1 ]
机构
[1] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
来源
WAVELETS AND SPARSITY XVII | 2017年 / 10394卷
关键词
Functional MRI; Connectomics; Parcellation; Resolution; Clustering; CONNECTOME; NETWORKS; COHORT; GRAPHS;
D O I
10.1117/12.2274846
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a data-driven approach for the subdivision of an individual subject's functional Magnetic Resonance Imaging (fMRI) scan into regions of interest, i.e., brain parcellation. The approach is based on a computational technique for calculating resolution from inverse problem theory, which we apply to neighborhood selection for brain connectivity networks. This can be efficiently calculated even for very large images, and explicitly incorporates regularization in the form of spatial smoothing and a noise cutoff. We demonstrate the reproducibility of the method on multiple scans of the same subjects, as well as the variations between subjects.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Resolution-based spectral clustering for brain parcellation using functional MRI
    Dillon, Keith
    Wang, Yu-Ping
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2020, 335
  • [2] SPECTRAL CLUSTERING BASED PARCELLATION OF FETAL BRAIN MRI
    Pepe, A.
    Auzias, G.
    De Guio, F.
    Rousseau, F.
    Germanaud, D.
    Mangin, J-F.
    Girard, N.
    Coulon, O.
    Lefevre, J.
    [J]. 2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 152 - 155
  • [3] Functional Parcellation of Memory Related Brain Networks by Spectral Clustering of EEG Data
    Aydin, Cagatay
    Oktay, Oytun
    Gunebakan, Adem Umut
    Ciftci, Rifat Koray
    Ademoglu, Ahmet
    [J]. 2012 35TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2012, : 581 - 585
  • [4] A NEW HIERARCHICAL BRAIN PARCELLATION METHOD BASED ON DISCRETE MORSE THEORY FOR FUNCTIONAL MRI DATA
    Dias, A.
    Bianciardi, M.
    Nunes, S.
    Abreu, R.
    Rodrigues, J.
    Silveira, L. M.
    Wald, L. L.
    Figueiredo, P.
    [J]. 2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 1336 - 1339
  • [5] Parcellation of functional sub-regions from fMRI: A graph clustering based approach
    Haq, Nandinee Fariah
    Tan, Sun Nee
    McKeown, Martin J.
    Wang, Z. Jane
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 49 : 181 - 191
  • [6] Regularized-Ncut: Robust and homogeneous functional parcellation of neonate and adult brain networks
    Peng, Qinmu
    Ouyang, Minhui
    Wang, Jiaojian
    Yu, Qinlin
    Zhao, Chenying
    Slinger, Michelle
    Li, Hongming
    Fan, Yong
    Hong, Bo
    Huang, Hao
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 106
  • [7] A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats
    Denis, C.
    Lebarbier, E.
    Levy-Leduc, C.
    Martin, O.
    Sansonnet, L.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (03) : 623 - 640
  • [8] Evaluation of functional MRI-based human brain parcellation: a review
    Moghimi, Pantea
    Dang, Anh The
    Do, Quan
    Netoff, Theoden I.
    Lim, Kelvin O.
    Atluri, Gowtham
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2022, 128 (01) : 197 - 217
  • [9] Functional Parcellation of Human Brain Precuneus Using Density-Based Clustering
    Luo, Zhiguo
    Zeng, Ling-Li
    Qin, Jian
    Hou, Chenping
    Shen, Hui
    Hu, Dewen
    [J]. CEREBRAL CORTEX, 2020, 30 (01) : 269 - 282
  • [10] Insula Functional Parcellation from FMRI Data via Improved Artificial Bee-Colony Clustering
    Zhao, Xuewu
    Ji, Junzhong
    Yao, Yao
    [J]. BRAIN INFORMATICS, BI 2017, 2017, 10654 : 72 - 82