Traveling-wave tube amplifier performance evaluation and design optimization for applications in digital communications with multilevel modulations

被引:21
|
作者
Qiu, JX [1 ]
Abe, DK
Antonsen, TM
Danly, BG
Levush, B
机构
[1] USN, Res Lab, Vacuum Elect Branch, Washington, DC 20375 USA
[2] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Sci Applicat Int Corp, Mclean, VA 22101 USA
关键词
communication systems; microwave circuit optimization; microwave power amplifiers (PAs); nonlinear distortion; satellite communication; traveling-wave tubes (TWTs);
D O I
10.1109/TMTT.2003.815266
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we demonstrate the use of a power margin as a figure-of-merit for evaluating the performance and optimizing the design of traveling-wave tube amplifiers (TWTAs) used in digital communication applications with multilevel modulations. The power margin is a system-level measure that balances both device efficiency and nonlinear distortion and provides a more direct prediction of the system-level performance of power amplifiers than device-level measures such as device efficiency or error-vector-magnitude. We calculate the power margin for M quadrature amplitude modulation for an existing TWTA to demonstrate the setting of an optimal amplifier operating drive level according to the criterion of the maximum power margin. The power margin can also be used to compare the performance of different traveling-wave tube (TWT) configurations. We compare the calculated power-margin performance for helix TWT circuits optimized with different optimization goal functions using the helix TWT design code CHRISTINE. The goal functions used in the optimization of the TWT circuits include AM/PM optimization, complex gain optimization, efficiency optimization, and a new digital goal function optimization. The digital goal function is shown to provide an enhanced power margin compared to the other three goal functions and demonstrates the potential of TWT device design optimization from a system perspective.
引用
收藏
页码:1911 / 1919
页数:9
相关论文
共 50 条
  • [21] Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments
    Menninger, WL
    Danly, GG
    Temkin, RJ
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (03) : 687 - 699
  • [22] Third-Harmonic Traveling-Wave Tube Multiplier-Amplifier
    Gong, Huarong
    Wang, Qi
    Deng, Difu
    Meng, Xiang'ai
    Dong, Yao
    Xu, Jin
    Tang, Tao
    Su, Xiaogang
    Wang, Zhanliang
    Gong, Yubin
    Travish, Gil
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) : 2189 - 2194
  • [23] FIELD-THEORY OF A TRAVELING-WAVE TUBE AMPLIFIER WITH A TAPE HELIX
    FREUND, HP
    VANDERPLAATS, NR
    KODIS, MA
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1993, 21 (06) : 654 - 668
  • [24] LINEARIZER FOR HIGH-POWER TRAVELING-WAVE TUBE AMPLIFIER.
    Satoh, Gunkichi
    Electronics & communications in Japan, 1979, 62 (10): : 72 - 80
  • [25] Experimental demonstration of an emission-gated traveling-wave tube amplifier
    Whaley, DR
    Gannon, BM
    Heinen, VO
    Kreischer, KE
    Holland, CE
    Spindt, CA
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (03) : 998 - 1008
  • [26] ASSESSMENT OF THE HV PERFORMANCE OF TRAVELING-WAVE TUBE COMPONENTS
    WETZER, JM
    DANIKAS, MG
    VANDERLAAN, PCT
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1989, 24 (06): : 963 - 967
  • [27] A HIGH-POWER 2 STAGE TRAVELING-WAVE TUBE AMPLIFIER
    SHIFFLER, D
    NATION, JA
    SCHACHTER, L
    IVERS, JD
    KERSLICK, GS
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (01) : 106 - 113
  • [28] A 10W, 20GHZ-BAND TRAVELING-WAVE TUBE AMPLIFIER FOR COMMUNICATIONS-SATELLITE
    ISHIBORI, K
    MITA, N
    YAMAMOTO, K
    REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1983, 31 (05): : 634 - 641
  • [29] Fifteen Years of Linearized Traveling-Wave Tube Amplifiers for Space Communications
    Menninger, William L.
    2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2016,
  • [30] Design and experimental verification of a cascade traveling-wave thermoacoustic amplifier
    Senga, Mariko
    Hasegawa, Shinya
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (20)