Motion by stopping: Rectifying Brownian motion of nonspherical particles

被引:13
|
作者
Sporer, Susan [1 ]
Goll, Christian [1 ]
Mecke, Klaus [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.011917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that Brownian motion is spatially not symmetric for mesoscopic particles embedded in a fluid if the particle is not in thermal equilibrium and its shape is not spherical. In view of applications to molecular motors in biological cells, we sustain nonequilibrium by stopping a nonspherical particle at periodic sites along a filament. Molecular dynamics simulations in a Lennard-Jones fluid demonstrate that directed motion is possible without a ratchet potential or temperature gradients if the asymmetric nonequilibrium relaxation process is hindered by external stopping. Analytical calculations in the ideal gas limit show that motion even against a fluid drift is possible and that the direction of motion can be controlled by the shape of the particle, which is completely characterized by tensorial Minkowski functionals.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] An optimal stopping problem for a geometric Brownian motion with Poissonian jumps
    Ohnishi, M
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (11-13) : 1381 - 1390
  • [42] The motion of repulsive Brownian particles in quenched disorder
    Liu, G
    Li, BG
    Han, RS
    Yang, SD
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 241 - 244
  • [43] Complex motion of Brownian particles with energy depots
    Schweitzer, F
    Ebeling, W
    Tilch, B
    PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5044 - 5047
  • [44] On motion of Brownian particles along a delaying screen
    Rasova S.S.
    Harlamov B.P.
    Journal of Mathematical Sciences, 2013, 188 (6) : 737 - 747
  • [45] Complex motion of Brownian particles with energy supply
    Ebeling, W
    Erdmann, U
    Schimansky-Geier, L
    Schweitzer, F
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 183 - 190
  • [46] Brownian motion of suspended particles in an anisotropic medium
    Hsia, YF
    Fang, N
    Widatallah, HM
    Wu, DM
    Lee, XM
    Zhang, JR
    HYPERFINE INTERACTIONS, 2000, 126 (1-4): : 401 - 406
  • [47] Condensation of SIP Particles and Sticky Brownian Motion
    Mario Ayala
    Gioia Carinci
    Frank Redig
    Journal of Statistical Physics, 2021, 183
  • [48] Active brownian motion of pairs and swarms of particles
    Ebeling, W.
    ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1657 - 1671
  • [49] Stochastic Spacetime and Brownian Motion of Test Particles
    L. H. Ford
    International Journal of Theoretical Physics, 2005, 44 : 1753 - 1768
  • [50] Fractional Brownian motion of particles in capillary waves
    Schroder, E
    Levinsen, MT
    Alstrom, P
    PHYSICA A, 1997, 239 (1-3): : 314 - 321