Fitness function based sensor degradation estimation using H∞ filter

被引:3
|
作者
Arosh, S. [1 ]
Suryaprakash [1 ]
Nayak, S. K. [2 ]
Duttagupta, S. P. [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Ctr Res Nanotechnol & Sci, Bombay 400076, Maharashtra, India
来源
SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15) | 2015年 / 58卷
关键词
Fitness function; H-infinity filter; sensor degradation; automatic gain control using H-infinity filter;
D O I
10.1016/j.procs.2015.08.048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a practical scenario, sensors are used for health monitoring, condition monitoring of systems, weather, etc. but it is highly probable that the sensor itself degrades. This degradation in the sensors causes erroneous true negative results. Therefore, to improve the reliability and eliminate incorrect data, it is important to gauge the health of sensor and periodically determine its' degradation level to change it within stipulated time. This paper introduces an efficient method to estimate the level of sensor degradation using its fitness function, which will indicate the level of fitness of the sensor to be used and estimate the future values from the fitness function. H-infinity filter based estimation theory is used to predict the future values of the fitness function of the sensors. Thus, to maintain the desired value and right turnout, an Automatic Gain Controller circuit is explained which helps us suggest to put back the degraded sensor. The results are presented along with the estimated fitness function. (C) 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [1] H∞ control of nonlinear system using orthogonal function neural network based on filter estimation
    Wang H.-W.
    Xia H.
    Wang, Hong-Wei (wanghw@dlut.edu.cn), 1600, Northeast University (32): : 281 - 286
  • [2] ESTIMATION OF PHYSICAL FITNESS USING A LOGISTIC FUNCTION
    PEREGRIN, J
    SKRANC, O
    BARTAK, K
    PHYSIOLOGIA BOHEMOSLOVACA, 1972, 21 (04): : 427 - +
  • [3] ESPEE: Event-Based Sensor Pose Estimation Using an Extended Kalman Filter
    Colonnier, Fabien
    Della Vedova, Luca
    Orchard, Garrick
    SENSORS, 2021, 21 (23)
  • [4] Distributed Field Estimation Using Sensor Networks Based on H Consensus Filtering
    Yu, Haiyang
    Zhang, Rubo
    Wu, Junwei
    Li, Xiuwen
    SENSORS, 2018, 18 (10)
  • [5] Estimation of road shape feature using H∞ filter
    Fujiiwara, Y
    Fujihira, T
    Adachi, S
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1531 - 1534
  • [6] Performance bounds for robust estimation using the H∞ filter
    Ganapathy, Karthik
    Summers, Tyler
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2329 - 2333
  • [7] Pose estimation by extended Kalman filter using noise covariance matrices based on sensor output
    Saito, Ayuko
    Kizawa, Satoru
    Kobayashi, Yoshikazu
    Miyawaki, Kazuto
    ROBOMECH JOURNAL, 2020, 7 (01):
  • [9] Pose estimation by extended Kalman filter using noise covariance matrices based on sensor output
    Ayuko Saito
    Satoru Kizawa
    Yoshikazu Kobayashi
    Kazuto Miyawaki
    ROBOMECH Journal, 7
  • [10] Kalman Filter-Based Noise Reduction Framework for Posture Estimation Using Depth Sensor
    Ahmed, Ferdous
    Bari, A. S. M. Hossain
    Sieu, Brandon
    Sadeghi, Javad
    Scholten, Jeffrey
    Gavrilova, Marina L.
    PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019), 2019, : 150 - 158