Performance bounds for robust estimation using the H∞ filter

被引:0
|
作者
Ganapathy, Karthik [1 ]
Summers, Tyler [1 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, 800 W Campbell Rd, Richardson, TX 75080 USA
来源
2021 EUROPEAN CONTROL CONFERENCE (ECC) | 2021年
关键词
SYSTEMS COMPLEXITY; ACTUATOR PLACEMENT; SENSOR; CONTROLLABILITY; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key concern in network observability is to quantify performance and robustness limitations for state estimation from noisy sensors in terms of its dynamical properties and sensor architecture. We develop performance bounds for the robust H-infinity filter, a generalization of the Kalman filter. Utilizing an eigenvalue bound on the observability Gramian, we derive a related eigenvalue bound on the estimation error covariance matrix from the generalized Riccati equation of the H-infinity filter. As a special case, we obtain estimation performance bounds on the Kalman Filter. The bounds reflect the cardinality of the network and sensor set, the stability of the network, and the number and specific set of states to be estimated. We illustrate our results with numerical analysis on a regular network showing how the bounds change with system parameters.
引用
收藏
页码:2329 / 2333
页数:5
相关论文
共 50 条
  • [1] Robust estimation of motion and structure using a discrete H∞ filter
    Qian, G
    Kale, A
    Chellappa, R
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 616 - 619
  • [2] Robust estimation of power quality disturbances using unscented H∞ filter
    Sahoo, Harish K.
    Dash, P. K.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 438 - 447
  • [3] Analysis of the sigma filter using robust estimation
    Pan, H
    Daly, S
    Sezan, MI
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS IV, 2005, 5672 : 70 - 81
  • [4] Application Research on Data Segment by Robust H∞ Filter Estimation
    Wu Wei
    Ma Xiaoning
    Xu Xinhe
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 680 - +
  • [5] Robust channel estimation using the hybrid particle filter
    Iltis, RA
    CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 1512 - 1516
  • [6] Estimation of Attitude Using Robust Adaptive Kalman Filter
    Candan, Batu
    Soken, H. Ersin
    2021 IEEE 8TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (IEEE METROAEROSPACE), 2021, : 159 - 163
  • [7] Robust H∞ Filter Design Using Frequency Gridding
    Seiler, Peter
    Vanek, Balint
    Bokor, Jozsef
    Balas, Gary J.
    2011 AMERICAN CONTROL CONFERENCE, 2011,
  • [8] Robust attitude estimation using an adaptive unscented Kalman filter
    Chiella, Antonio C. B.
    Teixeira, Bruno O. S.
    Pereira, Guilherme A. S.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7748 - 7754
  • [9] Robust state estimation using desensitized Divided Difference Filter
    Karlgaard, Christopher D.
    Shen, Haijun
    ISA TRANSACTIONS, 2013, 52 (05) : 629 - 637
  • [10] Estimation of Vehicle State Using Robust Cubature Kalman Filter
    Wang, Yan
    Zhang, Fengjiao
    Geng, Keke
    Zhuang, Weichao
    Dong, Haoxuan
    Yin, Guodong
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1024 - 1029