Polarization Analysis of Gas Diffusion Electrode with Different Fabrication Parameters in Metal-Air Batteries

被引:4
|
作者
Li, Wenqi [1 ,2 ]
Yan, Zhao [1 ]
Li, Xiaoke [1 ,3 ]
Liu, Qianfeng [1 ,2 ]
Wang, Erdong [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Shandong, Peoples R China
关键词
gas diffusion electrodes; metal-air batteries; polarization separation; pressing pressure; polytetrafluoroethylene; OXYGEN REDUCTION REACTION; CATALYST LAYER; HIGH-PERFORMANCE; CATHODE; POLYTETRAFLUOROETHYLENE; THICKNESS; TRANSPORT;
D O I
10.1002/ente.202000121
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The gas diffusion electrode (GDE) represents the most significant component in metal-air batteries (MABs). It is essential to understand the underlying behaviors of GDE and optimize its performance. Herein, a polarization separation method from total polarization curve to single activation, ohmic, and mass transport polarizations of GDE in MABs is proposed for the first time, which is then applied in the investigation of detailed polarization behaviors of the GDE by changing the fabrication parameters. As the polytetrafluoroethylene contents in the catalyst and gas diffusion layers and pressing pressure are adjusted, hydrophobicity, porosity, coverage, and thickness are changed to influence the performance of GDE. Through this analysis, a detailed understanding of the structure-performance relationship of GDE is achieved to improve the electrode design, architecture, and fabrication.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Aqueous air cathodes and catalysts for metal-air batteries
    Timofeeva, Elena V.
    Segre, Carlo U.
    Pour, Gavin S.
    Vazquez, Matthew
    Patawah, Benard L.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 38
  • [32] Materials Design for Rechargeable Metal-Air Batteries
    Wang, Hao-Fan
    Xu, Qiang
    MATTER, 2019, 1 (03) : 565 - 595
  • [33] Multifunctional inorganic electrode materials for high-performance rechargeable metal-air batteries
    Kubo, Daiju
    Tadanaga, Kiyoharu
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (23) : 6804 - 6809
  • [34] A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal-Air Batteries
    Wang, Yan-Jie
    Fang, Baizeng
    Zhang, Dan
    Li, Aijun
    Wilkinson, David P.
    Ignaszak, Anna
    Zhang, Lei
    Zhang, Jiujun
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 1 - 34
  • [35] METAL-AIR BATTERIES - THEIR STATUS AND POTENTIAL - REVIEW
    BLURTON, KF
    SAMMELLS, AF
    JOURNAL OF POWER SOURCES, 1979, 4 (04) : 263 - 279
  • [36] The fabrication of exfoliated graphite sheet-based air cathodes and gel electrolyte for metal-air batteries
    Koc, Ramazan
    Ozkececi, Seda
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (14) : 1780 - 1790
  • [37] Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries
    Yuasa, Masayoshi
    Imamura, Hiroshi
    Nishida, Masatoshi
    Kida, Tetsuya
    Shimanoe, Kengo
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 : 50 - 52
  • [38] Achieving low overpotentials in metal-air batteries
    Wu, Yiying
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [39] Progress in development of flexible metal-air batteries
    Sumboja, Afriyanti
    Ge, Xiaoming
    Zong, Yun
    Liu, Zhaolin
    FUNCTIONAL MATERIALS LETTERS, 2016, 9 (02)
  • [40] Disproportionation of Sodium Superoxide in Metal-Air Batteries
    Sheng, Chuanchao
    Yu, Fengjiao
    Wu, Yuping
    Peng, Zhangquan
    Chen, Yuhui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (31) : 9906 - 9910