Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:33
|
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [41] CSF neurofilaments and N-acetylaspartate in relation to MRI-metrics at 3T in clinically isolated syndromes suggestive of multiple sclerosis
    Khalil, M.
    Enzinger, C.
    Langkammer, C.
    Ropele, S.
    Mader, A.
    Vane, M.
    Trentini, A.
    Wallner-Blazek, M.
    Archelos, J. -J.
    Blankenstein, M. A.
    Fuchs, S.
    Fazekas, F.
    Teunissen, C. E.
    MULTIPLE SCLEROSIS JOURNAL, 2011, 17 : S266 - S267
  • [42] Deep gray matter segmentation from 1.5T vs. 3T MRI in normal controls and patients with multiple sclerosis
    Chu, R.
    Hurwitz, S.
    Tauhid, S.
    Bakshi, R.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 495 - 495
  • [43] Deep Gray Matter Segmentation from 1.5T vs. 3T MRI in Normal Controls and Patients with Multiple Sclerosis
    Chu, Renxin
    Hurwitz, Shelley
    Tauhid, Shahamat
    Bakshi, Rohit
    NEUROLOGY, 2016, 86
  • [44] Multiple Sclerosis Lesion Segmentation in Brain MRI Using Inception Modules Embedded in a Convolutional Neural Network
    Ansari, Shahab U.
    Javed, Kamran
    Qaisar, Saeed Mian
    Jillani, Rashad
    Haider, Usman
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [45] Whole Brain Volume Measured from 1.5T versus 3T MRI in Healthy Subjects and Patients with Multiple Sclerosis
    Chu, Renxin
    Tauhid, Shahamat
    Glanz, Bonnie I.
    Healy, Brian C.
    Kim, Gloria
    Oommen, Vinit V.
    Khalid, Fariha
    Neema, Mohit
    Bakshi, Rohit
    JOURNAL OF NEUROIMAGING, 2016, 26 (01) : 62 - 67
  • [46] CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes
    Maria L. Elkjaer
    Arkadiusz Nawrocki
    Tim Kacprowski
    Pernille Lassen
    Anja Hviid Simonsen
    Romain Marignier
    Tobias Sejbaek
    Helle H. Nielsen
    Lene Wermuth
    Alyaa Yakut Rashid
    Peter Høgh
    Finn Sellebjerg
    Richard Reynolds
    Jan Baumbach
    Martin R. Larsen
    Zsolt Illes
    Scientific Reports, 11
  • [47] OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI
    Sweeney, Elizabeth M.
    Shinohara, Russell T.
    Shiee, Navid
    Mateen, Farrah J.
    Chudgar, Avni A.
    Cuzzocreo, Jennifer L.
    Calabresi, Peter A.
    Pham, Dzung L.
    Reich, Daniel S.
    Crainiceanu, Ciprian M.
    NEUROIMAGE-CLINICAL, 2013, 2 : 402 - 413
  • [48] CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes
    Elkjaer, Maria L.
    Nawrocki, Arkadiusz
    Kacprowski, Tim
    Lassen, Pernille
    Simonsen, Anja Hviid
    Marignier, Romain
    Sejbaek, Tobias
    Nielsen, Helle H.
    Wermuth, Lene
    Rashid, Alyaa Yakut
    Hogh, Peter
    Sellebjerg, Finn
    Reynolds, Richard
    Baumbach, Jan
    Larsen, Martin R.
    Illes, Zsolt
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI*
    Hashemi, Maryam
    Akhbari, Mahsa
    Jutten, Christian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [50] Assessing early brain development in neonates by segmentation of high-resolution 3T MRI
    Gerig, G
    Prastawa, M
    Lin, WL
    Gilmore, J
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 979 - 980