Clique number and distance spectral radii of graphs

被引:0
|
作者
Zhai, Mingqing [1 ,2 ]
Yu, Guanglong [3 ]
Shu, Jinlong [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Graph; Clique number; Distance spectral radius; LARGEST EIGENVALUE; MATRIX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The distance spectral radius of a connected graph G, denoted by rho(G), is the maximal eigenvalue of the distance matrix of G. In this paper we find a sharp lower bound as well as a sharp upper bound of rho(G) in terms of omega(G), the clique number of G. Furthermore, both extremal graphs are unique decided.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 50 条
  • [31] On the Aα-Spectral Radii of Cactus Graphs
    Wang, Chunxiang
    Wang, Shaohui
    Liu, Jia-Bao
    Wei, Bing
    MATHEMATICS, 2020, 8 (06)
  • [32] CLIQUE-TO-CLIQUE TRIANGLE FREE DETOUR DISTANCE IN GRAPHS
    Asir, I. Keerthi
    Athisayanathan, S.
    ARS COMBINATORIA, 2019, 146 : 323 - 340
  • [33] On the clique number of integral circulant graphs
    Basic, Milan
    Ilic, Aleksandar
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1406 - 1411
  • [34] Sweeping graphs with large clique number
    Yang, BT
    Dyer, D
    Alspach, B
    ALGORITHMS AND COMPUTATION, 2004, 3341 : 908 - 920
  • [35] Dense Graphs with Small Clique Number
    Goddard, Wayne
    Lyle, Jeremy
    JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 319 - 331
  • [36] Sweeping graphs with large clique number
    Yang, Boting
    Dyer, Danny
    Alspach, Brian
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5770 - 5780
  • [37] On the structure of graphs with bounded clique number
    Brandt, S
    COMBINATORICA, 2003, 23 (04) : 693 - 696
  • [38] On connectivity in graphs with given clique number
    Hellwig, A
    Volkmann, L
    JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 7 - 14
  • [39] Spectral radius and clique partitions of graphs
    Zhou, Jiang
    van Dam, Edwin R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 84 - 94
  • [40] The list chromatic number of graphs with small clique number
    Molloy, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 264 - 284