Forecasting of typhoon wave based on hybrid machine learning models

被引:7
|
作者
Gong, Yijie [1 ]
Dong, Sheng [1 ]
Wang, Zhifeng [1 ]
机构
[1] Ocean Univ China, Coll Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Typhoon wave; Real-time forecast; Hybrid multi -layer perceptron; Hybrid genetic expression programming; Machine learning; ARTIFICIAL NEURAL-NETWORK; PREDICTION; HEIGHT;
D O I
10.1016/j.oceaneng.2022.112934
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The generation of typhoon waves is associated with both marine meteorological factors and continuous dynamic time series. This study develops a hybrid multi-layer perceptron (HMLP) neural network and a hybrid genetic expression programming (HGEP) model with a switch layer to forecast the typhoon waves. The switch layer transforms the input data as vectors with specified time delay under the precondition of the physical-based essence modeled. Metocean data from 55 typhoons passing through the Fujian and Taiwan sea areas are used as training data. Typhoon Talim was tested on ten test sites in the research area, and the forecast lead time was set to 3h, 6h, 12h, and 24h. The hybrid models can forecast the significant wave height well, with RAE no more than 0.83 and RRSE no more than 0.8. The actually occurred Typhoon Lekima and Typhoon Mitag were tested and observed, and showed an agreement between test data, forecast results, and observed data. The influence factors of forecast performance are discussed. The amount of training typhoons and the similarity of training typhoon tracks to target typhoon have influence on the forecast results. The forecast performance is related to the impact intensity of the typhoon on the test sites.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting
    Khan, Prince Waqas
    Byun, Yung-Cheol
    Lee, Sang-Joon
    Park, Namje
    ENERGIES, 2020, 13 (11)
  • [32] Weather based forecasting of sterility mosaic disease in pigeonpea (Cajanu cajan) using machine learning techniques and hybrid models
    Paul, Ranjit Kumar
    Vennila, S.
    Yadav, Satish Kumar
    Bhat, M. N.
    Kumar, M.
    Chandra, P.
    Paul, A. K.
    Prabhakar, M.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2020, 90 (10): : 116 - 122
  • [33] Solar Irradiation and Wind Speed Forecasting Based on Regression Machine Learning Models
    Amoura, Yahia
    Torres, Santiago
    Lima, José
    Pereira, Ana I.
    Lecture Notes in Networks and Systems, 2023, 649 LNNS : 31 - 51
  • [34] Improving the Forecasting Accuracy of Civil Aviation Passengers Based on Machine Learning Models
    Liu, Xia
    Huang, Xia
    Chen, Lei
    Qiu, Zhao
    Chen, Mingrui
    2017 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2017, : 298 - 304
  • [35] Evaluating Machine Learning Models for Multimodal Probability-Based Energy Forecasting
    Sadu, Vijaya Bhaskar
    Kumar, R. Santhi
    Kumar, B. Srinivasa
    Kavitha, T.
    Chapala, Hari Kishan
    Chakravarthi, M. Kalyan
    PROCESS INTEGRATION AND OPTIMIZATION FOR SUSTAINABILITY, 2024, 8 (04) : 1209 - 1222
  • [36] Machine Learning Based Univariate Models For Long Term Wind Speed Forecasting
    Akash, R.
    Rangaraj, A. G.
    Meenal, R.
    Lydia, M.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 779 - 784
  • [37] Short-term Electricity Price Forecasting Using Interpretable Hybrid Machine Learning Models
    Mubarak, Hamza
    Ahmad, Shameem
    Hossain, Al Amin
    Horan, Ben
    Abdellatif, Abdallah
    Mekhilef, Saad
    Seyedmahmoudian, Mehdi
    Stojcevski, Alex
    Mokhlis, Hazlie
    Kanesan, Jeevan
    Becherif, Mohamed
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [38] A hybrid machine learning framework for forecasting house price
    Zhan, Choujun
    Liu, Yonglin
    Wu, Zeqiong
    Zhao, Mingbo
    Chow, Tommy W. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
  • [39] Forecasting electricity demand by hybrid machine learning model
    Fan, Shu
    Mao, Chengxiong
    Zhang, Jiadong
    Chen, Luonan
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 952 - 963
  • [40] A Hybrid Machine Learning System for Stock Market Forecasting
    Choudhry, Rohit
    Garg, Kumkum
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 29, 2008, 29 : 315 - 318