Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

被引:22
|
作者
Tolba, Mohammed F. [1 ]
Saleh, Hani [1 ]
Mohammad, Baker [1 ]
Al-Qutayri, Mahmoud [1 ]
Elwakil, Ahmed S. [2 ,3 ,4 ]
Radwan, Ahmed G. [4 ,5 ]
机构
[1] Khalifa Univ, SoC Ctr, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, PO 27272, Sharjah, U Arab Emirates
[3] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada
[4] Nile Univ, NISC Res Ctr, Cairo 12588, Egypt
[5] Cairo Univ, Dept Engn Math & Phys, Cairo, Egypt
关键词
Fractional-order systems; Chaotic oscillators; FPGA; IMPLEMENTATION; OSCILLATOR; EQUILIBRIA; POWER;
D O I
10.1007/s11071-019-05449-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grunwald-Letnikov's approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular realization is its flexibility in applications which enable easy real-time configuration of the values of the fractional orders, step sizes, and/or other system parameters without changing the hardware architecture. Different approximation techniques are used to improve the hardware performance including piece-wise linear/quadratic methods. As an application, a variable-order chaotic oscillator is implemented and verified using fractional orders that vary in time.
引用
收藏
页码:3143 / 3154
页数:12
相关论文
共 50 条
  • [31] Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller
    Duc, Tran Minh
    Van Hoa, Ngo
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [32] The Synchronization of a fractional-order chaotic system
    Zhang Fan-di
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1488 - 1491
  • [33] Passive realization of the fractional-order capacitor based on fractional-order inductor and its application
    Hao, Chunling
    Wang, Faqiang
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2023, 51 (06) : 2607 - 2622
  • [34] SM-Algorithms for Approximating the Variable-Order Fractional Derivative of High Order
    Moghaddam, B. P.
    Machado, J. A. T.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 293 - 311
  • [35] A novel variable-order fractional chaotic map and its dynamics
    Tang, Zhouqing
    He, Shaobo
    Wang, Huihai
    Sun, Kehui
    Yao, Zhao
    Wu, Xianming
    CHINESE PHYSICS B, 2024, 33 (03)
  • [36] Circuit Realization of the Fractional-Order Sprott K Chaotic System with Standard Components
    Gokyildirim, Abdullah
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [37] Chaotic system dynamics analysis and synchronization circuit realization of fractional-order memristor
    Jindong Liu
    Zhen Wang
    Mingshu Chen
    Peijun Zhang
    Rui Yang
    Baonan Yang
    The European Physical Journal Special Topics, 2022, 231 : 3095 - 3107
  • [38] A novel variable-order fractional chaotic map and its dynamics
    唐周青
    贺少波
    王会海
    孙克辉
    姚昭
    吴先明
    Chinese Physics B, 2024, 33 (03) : 325 - 334
  • [39] A fractional-order hopfield neural network chaotic system and its circuit realization
    Chenguang Ma
    Jun Mou
    Feifei Yang
    Huizhen Yan
    The European Physical Journal Plus, 135
  • [40] Chaotic system dynamics analysis and synchronization circuit realization of fractional-order memristor
    Liu, Jindong
    Wang, Zhen
    Chen, Mingshu
    Zhang, Peijun
    Yang, Rui
    Yang, Baonan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (16-17): : 3095 - 3107