Symbolic Regression with augmented dataset using RuleFit

被引:1
|
作者
de Franca, Fabricio Olivetti [1 ]
机构
[1] Univ Fed ABC, Ctr Math Comp & Cognit CMCC, Heurist & Anal Lab HAL, Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
symbolic regression; regression analysis; data augmentation;
D O I
10.1109/SYNASC57785.2022.00058
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Symbolic Regression models are often associated with transparency and interpretability. The main motivation is their ability to describe nonlinear models balancing accuracy and conciseness. But, in practice, it may generate models that are hard to understand at the same level as opaque models. From another perspective, linear models are guaranteed to be transparent but fail to model nonlinearities and interactions. The algorithm RuleFit uses a tree-based nonlinear model to create meta-features augmenting the dataset, increasing the accuracy of the linear models while maintaining their transparency. In this paper we test whether this augmented dataset can help Symbolic Regression models to find more transparent models without reducing the overall accuracy. The results indicate that the augmented models have a slightly better accuracy on a class of benchmarks while keeping the expression size small and closer to a linear model. As a caveat, the models also tend to become closer to a step function which limits the interpretability of the studied phenomena.
引用
收藏
页码:323 / 326
页数:4
相关论文
共 50 条
  • [21] Steel Phase Kinetics Modeling using Symbolic Regression
    Piringer, David
    Bloder, Bernhard
    Kronberger, Gabriel
    2022 24TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC, 2022, : 327 - 330
  • [22] Modeling cutting machining process using symbolic regression α-β
    Torres-Trevino, L. M.
    Escamilla, I.
    Gonzalez, B.
    Praga-Alejo, R.
    Perez-Villanueva, P.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (9-12): : 2351 - 2366
  • [23] Synchronization control of oscillator networks using symbolic regression
    Julien Gout
    Markus Quade
    Kamran Shafi
    Robert K. Niven
    Markus Abel
    Nonlinear Dynamics, 2018, 91 : 1001 - 1021
  • [24] Augmented Dynamic Symbolic Execution
    Jamrozik, Konrad
    Fraser, Gordon
    Tillmann, Nikolai
    de Halleux, Jonathan
    2012 PROCEEDINGS OF THE 27TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 2012, : 254 - 257
  • [25] Scaled symbolic regression
    Keijzer M.
    Genetic Programming and Evolvable Machines, 2004, 5 (03) : 259 - 269
  • [26] Priors For Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2402 - 2411
  • [27] Exhaustive Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 950 - 964
  • [28] ACCURACY IN SYMBOLIC REGRESSION
    Korns, Michael F.
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 129 - 151
  • [29] A review of "Symbolic Regression"
    Cava, William G. La
    Kronberger, Gabriel
    Burlacu, Bogdan
    Kommenda, Michael
    Winkler, Stephan M.
    Affenzeller, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2025, 26 (01)
  • [30] SYMBOLIC REGRESSION WITH SAMPLING
    Kommenda, Michael
    Kronberger, Gabriel K.
    Affenzeller, Michael
    Winkler, Stephan M.
    Feilmayr, Christoph
    Wagner, Stefan
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 13 - 18