p-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps

被引:45
|
作者
Ou, YL [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
p-harmonic morphisms; biharmonic morphisms; nonharmonic biharmonic maps;
D O I
10.1016/j.geomphys.2005.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the transformation of a p-harmonic morphism into a q-harmonic morphism via biconformal change of the domain metric and/or conformal change of the codomain metric. As an application of p-harmonic morphisms, we characterize a twisted product among doubly twisted products and a warped product among twisted products using p-harmonicity of their projection maps. We describe those p-harmonic morphisms which are also biharmonic morphisms and give a complete classification of polynomial biharmonic morphisms between Euclidean spaces. Finally, we show that a horizontally homothetic harmonic morphism with harmonic energy density pulls back a nonharmonic biharmonic map to a nonharmonic biharmonic map and that totally geodesic immersing the target manifold of a nonharmonic biharmonic map into an ambient manifold produces a new nonharmonic biharmonic map. These methods are used to construct many examples of nontrivial biharmonic maps. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 374
页数:17
相关论文
共 50 条
  • [31] Harmonic maps and biharmonic Riemannian submersions
    Urakawa, Hajime
    NOTE DI MATEMATICA, 2019, 39 (01): : 1 - 23
  • [32] Harmonic and biharmonic maps from surfaces
    Baird, P.
    Loubeau, E.
    Oniciuc, C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 223 - 230
  • [33] On the Geometry of Horizontally Homotheitic Maps and Harmonic Morphisms
    莫小欢
    数学进展, 1994, (03) : 282 - 283
  • [34] TWISTOR SPACES, PLURIHARMONIC MAPS AND HARMONIC MORPHISMS
    Simoes, Bruno Ascenso
    Svensson, Martin
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (03): : 367 - 385
  • [35] Rigidity properties of p-biharmonic maps and p-biharmonic submanifolds
    Barker, W.
    Dung, N. T.
    Seo, K.
    Tuyen, N. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [36] Fine topology and A(p)-harmonic morphisms
    Latvala, V
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1997, 22 (01): : 237 - 244
  • [37] fLk-Harmonic Maps and fLk-Harmonic Morphisms
    Mehran Aminian
    Mehran Namjoo
    Acta Mathematica Vietnamica, 2021, 46 : 499 - 507
  • [38] fLk-Harmonic Maps andfLk-Harmonic Morphisms
    Aminian, Mehran
    Namjoo, Mehran
    ACTA MATHEMATICA VIETNAMICA, 2021, 46 (03) : 499 - 507
  • [39] CONSERVATION-LAWS, EQUIVARIANT HARMONIC MAPS AND HARMONIC MORPHISMS
    BAIRD, P
    RATTO, A
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1992, 64 : 197 - 224
  • [40] HARMONIC AND BIHARMONIC MAPS BETWEEN TANGENT BUNDLES
    Belarbi, L.
    El Hendi, H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 187 - 199