First principles study on the spin unrestricted electronic structure properties of transition metal doped InN nanoribbons

被引:23
|
作者
Caliskan, S. [1 ]
Hazar, F. [1 ]
机构
[1] Fatih Univ, Dept Phys, TR-34500 Istanbul, Turkey
关键词
InN nanoribbon; First principles; Energy gap; Spin polarization; GRAPHENE NANORIBBONS; BAND GAP; NANOWIRES; TRANSPORT; OXIDE; PHOTOLUMINESCENCE; SEMICONDUCTORS; APPROXIMATION; SPINTRONICS; GROWTH;
D O I
10.1016/j.spmi.2015.05.004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the present study, first principles calculations were carried out to reveal the spin unrestricted electronic structure behavior of both pure and transition metal (TM) atom (V and Co) doped InN nanoribbons (InN-NRs). The influence of a substitutionally doped TM atom on the electronic structure nature was examined. The role of a TM dopant together with its location, governing the characteristic of spin dependent electronic property of a doped InN-NR, was addressed. The relevant properties were extracted through Hubbard correction for In-d, N-p and TM-d states. We observed that a single TM dopant diminished the spin dependent energy gap and can result in a significant induced magnetic moment in an InN-NR system. It was exposed that TM dopants can play an essential role in the spin unrestricted electronic behavior and spin polarization, which can be tuned through a V or Co atom at a certain position. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 180
页数:11
相关论文
共 50 条
  • [41] A first-principles study of transition metal doped arsenene
    Liu, Mingyang
    Chen, Qingyuan
    Huang, Yang
    Cao, Chao
    He, Yao
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 131 - 141
  • [42] First-principles study on structural and electronic properties of the armchair GaN nanoribbons
    Chen, GuoXiang
    Wang, DouDou
    ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEMS III, 2013, 703 : 67 - +
  • [43] Modulation of electronic structure properties in bilayer phosphorene nanoribbons by transition metal atoms
    Wu, Xiu
    Xie, You
    Yu, Bing-Yi
    Chen, Li-Yong
    Wang, Su-Fang
    Zhang, Jian-Min
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 130
  • [44] Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles
    Razieh Beiranvand
    Rare Metals, 2016, 35 (10) : 771 - 778
  • [45] First-principles study on electronic structure and optical properties of In-doped GaN
    Ruan, Xingxiang
    Zhang, Fuchun
    Zhang, Weihu
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2014, 13 (08):
  • [46] Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles
    Beiranvand, Razieh
    RARE METALS, 2016, 35 (10) : 771 - 778
  • [47] Electronic structure and optical properties of doped γ-CuI scintillator: a first-principles study
    Li, Meicong
    Zhang, Zheng
    Zhao, Qiang
    Huang, Mei
    Ouyang, Xiaoping
    RSC ADVANCES, 2023, 13 (14) : 9615 - 9623
  • [48] Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles
    Razieh Beiranvand
    Rare Metals, 2016, 35 : 771 - 778
  • [49] Tunable electronic and magnetic properties of transition metals doped antimonene: a first-principles study
    He, Cheng
    Cheng, Ming
    Zhang, WenXue
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06)
  • [50] Structural, Electronic, and Magnetic Properties of 3d Transition Metal Doped GaN Nanosheet: A First-Principles Study
    Chen, Guo-Xiang
    Wang, Dou-Dou
    Wen, Jun-Qing
    Yang, A-Ping
    Zhang, Jian-Min
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (13) : 1000 - 1005