Three-dimensional strain-rate imaging

被引:26
|
作者
Robson, MD
Constable, RT
机构
[1] Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, CT
[2] Yale University, School of Medicine, Department of Diagnostic Radiology, New Haven, CT 06520-8042
关键词
cardiac MRI; strain-rate; heart motion; echo planar imaging;
D O I
10.1002/mrm.1910360406
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Strain-rate imaging uses large velocity encoding gradients to obtain measurements of velocity that are extremely insensitive to the effects of random noise. The spatial differential of velocity yields the velocity gradient from which the strain-rate and twist-rate tensors can be determined. These tensors represent the distortion of the material and are of interest in the analysis of the dynamic behavior of living tissue (e.g., that of the myocardium). This work presents a new technique that uses the magnitude of the signal in the velocity encoded data to measure through-plane velocity variations at the resolution of the voxel size. The magnitude of the MR signal contains information about the range of phases present within a voxel. When the phase is dependent on the velocity (as in phase velocity imaging), the magnitude contains information about the range of velocities within a voxel. The method presented in this work uses unbalanced slice-refocusing gradients to sample the magnitude variation introduced by the interaction of velocity encoding gradients with spatially dependent velocities. The previously developed in-plane velocity gradient methods can be easily integrated with this new through-plane measurement to characterize the deformation of the myocardium in three spatial dimensions with high accuracy. The applicability of these methods is demonstrated theoretically, in phantoms and in vivo.
引用
收藏
页码:537 / 546
页数:10
相关论文
共 50 条
  • [21] Three-dimensional imaging in urology
    Ghani, KR
    Pilcher, J
    Patel, U
    Anson, K
    BJU INTERNATIONAL, 2004, 94 (06) : 769 - 773
  • [22] Three-dimensional imaging of dislocations
    Peter Rez
    Michael M. J. Treacy
    Nature, 2013, 503 : E1 - E1
  • [23] Three-dimensional electrocardiographic imaging
    He, B
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 5320 - 5320
  • [24] Three-dimensional ultrasound imaging
    Fenster, A
    Downey, DB
    Cardinal, HN
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (05): : R67 - R99
  • [25] Three-dimensional ultrasound imaging
    Nelson, TR
    Pretorius, DH
    ULTRASOUND IN MEDICINE AND BIOLOGY, 1998, 24 (09): : 1243 - 1270
  • [26] Three-dimensional ultrasound imaging
    Gebhard, Ralf E.
    Eubanks, Treniece N.
    Meeks, Rachel
    CURRENT OPINION IN ANESTHESIOLOGY, 2015, 28 (05) : 583 - 587
  • [27] Three-dimensional ultrasound imaging
    Fenster, A
    Downey, DB
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 : 457 - 475
  • [28] Three-dimensional ultrasound imaging
    Fenster, A
    Downey, DB
    MEDICAL IMAGE ACQUISITION AND PROCESSING, 2001, 4549 : 1 - 10
  • [29] Three-Dimensional Kaleidoscopic Imaging
    Reshetouski, Ilya
    Manakov, Alkhazur
    Seidel, Hans-Peter
    Ihrke, Ivo
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 353 - 360
  • [30] Three-dimensional spinning imaging
    Hashimoto, S
    Hiramatsu, K
    Yuasa, Y
    RADIOLOGY, 1996, 201 : 643 - 643