DNS Traffic Forecasting Using Deep Neural Networks

被引:4
|
作者
Madariaga, Diego [1 ]
Panza, Martin [1 ]
Bustos-Jimenez, Javier [1 ]
机构
[1] Univ Chile, NIC Chile Res Labs, Santiago, Chile
来源
关键词
DNS traffic; Forecasting; Machine Learning; ATTACKS;
D O I
10.1007/978-3-030-19945-6_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the continuous growth of Internet usage, the importance of DNS has also increased, and the large amount of data collected by DNS servers from users' queries becomes a very valuable data source, since it reveals user patterns and how their Internet usage changes through time. The periodicity in human behavior is also reflected in how users use the Internet and therefore in the DNS queries they generate. Thus, in this paper we propose the use of Machine Learning models in order to capture these Internet usage patterns for predicting DNS traffic, which has a huge relevance since a big difference between the expected DNS traffic and the real one, could be a sign of an anomaly in the data stream caused by an attack or a failure. To the best of the authors' knowledge this is the first attempt of forecasting DNS traffic using Neural Networks models, in order to propose an unsupervised and lightweight method to perform fast detection of anomalies in DNS data streams observed in DNS servers.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 50 条
  • [21] Residential Load Forecasting Using Deep Neural Networks (DNN)
    Hossen, Tareq
    Nair, Arun Sukumaran
    Chinnathambi, Radhakrishnan Angamuthu
    Ranganathan, Prakash
    [J]. 2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [22] Forecasting Solar Cycle 25 Using Deep Neural Networks
    B. Benson
    W. D. Pan
    A. Prasad
    G. A. Gary
    Q. Hu
    [J]. Solar Physics, 2020, 295
  • [23] Solar radiation forecasting by using deep neural networks in Eskisehir
    Qasem, Mohammed
    Basaran Filik, Ummuhan
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2021, 39 (02): : 159 - 169
  • [24] Indoor Air Pollution Forecasting Using Deep Neural Networks
    Altamirano-Astorga, Jorge
    Santiago-Castillejos, Ita-Andehui
    Hernandez-Martinez, Luz
    Roman-Rangel, Edgar
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 127 - 136
  • [25] Forecasting Solar Cycle 25 Using Deep Neural Networks
    Benson, B.
    Pan, W. D.
    Prasad, A.
    Gary, G. A.
    Hu, Q.
    [J]. SOLAR PHYSICS, 2020, 295 (05)
  • [26] Solar Irradiance Forecasting Using Deep Recurrent Neural Networks
    Alzahrani, Ahmad
    Shamsi, Pourya
    Ferdowsi, Mehdi
    Dagli, Cihan
    [J]. 2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 988 - 994
  • [27] Forecasting Stock Market Price Using Deep Neural Networks
    Gozalpour, Nima
    Teshnehlab, Mohammad
    [J]. 2019 7TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2019, : 27 - 30
  • [28] Traffic Data Imputation Using Deep Convolutional Neural Networks
    Benkraouda, Ouafa
    Thodi, Bilal Thonnam
    Yeo, Hwasoo
    Menendez, Monica
    Jabari, Saif Eddin
    [J]. IEEE ACCESS, 2020, 8 : 104740 - 104752
  • [29] Shallow Neural Networks to Deep Neural Networks for Probabilistic Wind Forecasting
    Arora, Parul
    Panigrahi, B. K.
    Suganthan, P. N.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 377 - 382
  • [30] Road Traffic Forecasting Using NeuCube and Dynamic Evolving Spiking Neural Networks
    Lana, Ibai
    Capecci, Elisa
    Del Ser, Javier
    Lobo, Jesus L.
    Kasabov, Nikola
    [J]. INTELLIGENT DISTRIBUTED COMPUTING XII, 2018, 798 : 192 - 203