Estimation of fuel moisture content using neural networks

被引:0
|
作者
Riaño, D
Ustin, SL
Usero, L
Patricio, MA
机构
[1] Univ Alcala de Henares, Dept Geog, E-28801 Alcala De Henares, Spain
[2] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing, Davis, CA 95616 USA
[3] Univ Alcala de Henares, Dept Ciencias Computac, E-28871 Alcala De Henares, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuel moisture content (FMC) is one of the variables that drive fire danger. Artificial Neural Networks (ANN) were tested to estimate FMC by calculating the two variables implicated, equivalent water thickness (EWT) and dry matter content (DM). DM was estimated for fresh and dry samples, since water masks the DM absorption features on fresh samples. We used the "Leaf Optical Properties Experiment" (LOPEX) database. 60% of the samples were used for the learning process in the network and the remaining ones for validation. EWT and DM on dry samples estimations were as good as other methods tested on the same dataset, such as inversion of radiative transfer models. DM estimations on fresh samples using ANN (r(2) = 0.86) improved significantly the results using inversion of radiative transfer models (r(2) = 0.38).
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [1] Estimation of the moisture content of tropical soils using colour images and artificial neural networks
    Zanetti, Sidney Sara
    Cecilio, Roberto Avelino
    Alves, Estevao Giacomin
    Silva, Vitor Heringer
    Sousa, Elias Fernandes
    [J]. CATENA, 2015, 135 : 100 - 106
  • [2] Estimation of Moisture Content Distribution in Porous Foam Using Microwave Tomography With Neural Networks
    Lahivaara, Timo
    Yadav, Rahul
    Link, Guido
    Vauhkonen, Marko
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1351 - 1361
  • [3] Remote sensing estimation of fuel moisture content
    Chuvieco, E
    Vaughan, PJ
    Riaño, D
    Cocero, D
    [J]. REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 329 - 335
  • [4] Estimation of Soil Moisture Profile Using Wavelet Neural Networks
    Kulaglic, Ajla
    Ustundag, Burak Berk
    [J]. THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 330 - 335
  • [5] Fuel moisture prediction in homogeneous fuels using GIS and neural networks
    Ball, BJ
    [J]. AI APPLICATIONS, 1997, 11 (03): : 73 - 78
  • [6] On the relevance of using artificial neural networks for estimating soil moisture content
    Elshorbagy, Amin
    Parasuraman, K.
    [J]. JOURNAL OF HYDROLOGY, 2008, 362 (1-2) : 1 - 18
  • [7] Prediction of Dried Durian Moisture Content Using Artificial Neural Networks
    Husna, Marati
    Purqon, Acep
    [J]. 6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739
  • [8] Predicting moisture content of agricultural products using artificial neural networks
    Topuz, Adnan
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (03) : 464 - 470
  • [9] Evaluation and Development of Pedotransfer Functions and Artificial Neural Networks to Saturation Moisture Content Estimation
    Trejo-Alonso, Josue
    Fuentes, Sebastian
    Morales-Duran, Nami
    Chavez, Carlos
    [J]. WATER, 2023, 15 (02)
  • [10] Protein content estimation in food products using neural networks
    Yin, KM
    [J]. LABORATORY ROBOTICS AND AUTOMATION, 1999, 11 (03) : 151 - 155