Evapotranspiration Modeling Using Linear Genetic Programming Technique

被引:47
|
作者
Kisi, Ozgur [1 ]
Guven, Aytac [2 ]
机构
[1] Erciyes Univ, Dept Civil Engn, Hydraul Div, TR-38039 Kayseri, Turkey
[2] Gaziantep Univ, Dept Civil Engn, Hydraul Div, TR-27310 Gaziantep, Turkey
关键词
Evapotranspiration; Computer programming; Neural networks; SCOUR DOWNSTREAM; PREDICTION; ANN;
D O I
10.1061/(ASCE)IR.1943-4774.0000244
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The study investigates the accuracy of linear genetic programming (LOP), which is an extension to genetic programming (GP) technique, in daily reference evapotranspiration (ET0) modeling. The daily climatic data, solar radiation, air temperature, relative humidity, and wind speed from three stations, Windsor, Oakville, and Santa Rosa, in central California, are used as inputs to the LGP to estimate ET0 obtained using the FAO-56 Penman-Monteith equation. The accuracy of the LOP is compared with those of the support vector regression (SVR), artificial neural network (ANN), and those of the following empirical models: the California irrigation management system Penman, Hargreaves, Ritchie, and Turc methods. The root-mean-square errors, mean-absolute errors, and determination coefficient (R-2) statistics are used for evaluating the accuracy of the models. Based on the comparison results, the LOP is found to be superior alternative to the SVR and ANN techniques.
引用
收藏
页码:715 / 723
页数:9
相关论文
共 50 条
  • [1] Daily pan evaporation modeling using linear genetic programming technique
    Guven, Aytac
    Kisi, Ozgur
    IRRIGATION SCIENCE, 2011, 29 (02) : 135 - 145
  • [2] Daily pan evaporation modeling using linear genetic programming technique
    Aytac Guven
    Özgür Kişi
    Irrigation Science, 2011, 29 : 135 - 145
  • [3] Monthly pan evaporation modeling using linear genetic programming
    Guven, Aytac
    Kisi, Ozgur
    JOURNAL OF HYDROLOGY, 2013, 503 : 178 - 185
  • [4] Modelling the dynamics of the evapotranspiration process using genetic programming
    Parasuraman, Kamban
    Elshorbagy, Amin
    Carey, Sean K.
    HYDROLOGICAL SCIENCES JOURNAL, 2007, 52 (03) : 563 - 578
  • [5] Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
    Shiri, Jalal
    Kisi, Ozgur
    Landeras, Gorka
    Javier Lopez, Jose
    Nazemi, Amir Hossein
    Stuyt, Louis C. P. M.
    JOURNAL OF HYDROLOGY, 2012, 414 : 302 - 316
  • [6] Modeling intrusion detection systems using linear genetic programming approach
    Mukkamala, S
    Sung, AH
    Abraham, A
    INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2004, 3029 : 633 - 642
  • [7] A genetic programming technique for lake level modeling
    Aytek, Ali
    Kisi, Ozgur
    Guven, Aytac
    HYDROLOGY RESEARCH, 2014, 45 (4-5): : 529 - 539
  • [8] Nonlinear modeling of shear strength of SFRC beams using linear genetic programming
    Gandomi, A. H.
    Alavi, A. H.
    Yun, G. J.
    STRUCTURAL ENGINEERING AND MECHANICS, 2011, 38 (01) : 1 - 25
  • [9] Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique
    Danandeh Mehr, Ali
    Kahya, Ercan
    Olyaie, Ehsan
    JOURNAL OF HYDROLOGY, 2013, 505 : 240 - 249
  • [10] Modeling a grinding circuit using genetic programming
    Karr, CL
    Borgelt, K
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 1785 - 1785