Relevance regression learning with support vector machines

被引:6
|
作者
Apolloni, Bruno [1 ]
Malchiodi, Dario [1 ]
Valerio, Lorenzo [2 ]
机构
[1] Univ Milan, Dip Sci Informaz, I-20135 Milan, Italy
[2] Univ Milan, Dip Matemat Federigo Enriques, I-20133 Milan, Italy
关键词
SVM; Regression; Uncertainty management; Relevance-based learning;
D O I
10.1016/j.na.2010.06.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a variant of two SVM regression algorithms expressly tailored in order to exploit additional information summarizing the relevance of each data item, as a measure of its relative importance w.r.t. the remaining examples. These variants, enclosing the original formulations when all data items have the same relevance, are preliminary tested on synthetic and real-world data sets. The obtained results outperform standard SVM approaches to regression if evaluated in light of the above mentioned additional information about data quality. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2855 / 2867
页数:13
相关论文
共 50 条
  • [1] Support vector regression machines
    Drucker, H
    Burges, CJC
    Kaufman, L
    Smola, A
    Vapnik, V
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 155 - 161
  • [2] Regression-Based Hyperparameter Learning for Support Vector Machines
    Peng, Shili
    Wang, Wenwu
    Chen, Yinli
    Zhong, Xueling
    Hu, Qinghua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023,
  • [3] Active learning with support vector machines in the relevance feedback document retrieval
    Onoda, Takashi
    Murata, Hiroshi
    Yamada, Seiji
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 2004 - +
  • [4] Support vector fuzzy regression machines
    Hong, DH
    Hwang, CH
    [J]. FUZZY SETS AND SYSTEMS, 2003, 138 (02) : 271 - 281
  • [5] Evolutionary support vector regression machines
    Stoean, Ruxandra
    Preuss, Mike
    Dumitrescu, D.
    Stoean, Catalin
    [J]. SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 330 - +
  • [6] Analysis of Support Vector Machines Regression
    Tong, Hongzhi
    Chen, Di-Rong
    Peng, Lizhong
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) : 243 - 257
  • [7] Adaptive support vector machines for regression
    Palaniswami, M
    Shilton, A
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1043 - 1049
  • [8] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    [J]. ANALYST, 2010, 135 (02) : 230 - 267
  • [9] Nonstationary regression with support vector machines
    Guillermo L. Grinblat
    Lucas C. Uzal
    Pablo F. Verdes
    Pablo M. Granitto
    [J]. Neural Computing and Applications, 2015, 26 : 641 - 649
  • [10] Nonstationary regression with support vector machines
    Grinblat, Guillermo L.
    Uzal, Lucas C.
    Verdes, Pablo F.
    Granitto, Pablo M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03): : 641 - 649