A simply connected surface of general type with pg=0 and K2=2

被引:70
|
作者
Lee, Yongnam [1 ]
Park, Jongil
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
D O I
10.1007/s00222-007-0069-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct a simply connected, minimal, complex surface of general type with p(g) = 0 and K-2 = 2 using a rational blow-down surgery and a Q-Gorenstein smoothing theory.
引用
收藏
页码:483 / 505
页数:23
相关论文
共 50 条
  • [21] The moduli space of even surfaces of general type with K2=8, pg=4 and q=0
    Catanese, Fabrizio
    Liu, Wenfei
    Pignatelli, Roberto
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 925 - 948
  • [22] On Surfaces with pg=0 and K2=5
    Werner, Caryn
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04): : 746 - 756
  • [23] On surfaces of general type with pg = q=1, K2=3
    Polizzi, F
    COLLECTANEA MATHEMATICA, 2005, 56 (02) : 181 - 234
  • [24] SURFACES WITH K2=2, PG=1, Q=0
    CATANESE, F
    DEBARRE, O
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 1 - 55
  • [25] The classification of minimal irregular surfaces of general type with K2= 2pg
    Ciliberto, Ciro
    Lopes, Margarida Mendes
    Pardini, Rita
    ALGEBRAIC GEOMETRY, 2014, 1 (04): : 479 - 488
  • [26] Inoue type manifolds and Inoue surfaces: a connected component of the moduli space of surfaces with K2=7, pg=0
    Bauer, Ingrid
    Catanese, Fabrizio
    GEOMETRY AND ARITHMETIC, 2012, : 23 - +
  • [27] Surfaces of general type with K2=2χ-1
    Werner, Caryn
    KYOTO JOURNAL OF MATHEMATICS, 2015, 55 (01) : 29 - 41
  • [28] Algebraic surfaces of general type with K2=3Pg - 5
    Ling, Songbo
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 1942 - 1960
  • [29] A survey on the bicanonical map of surfaces with pg=0 and K2 ≤ 2
    Lopes, MM
    Pardini, R
    ALGEBRAIC GEOMETRY -GERMANY: A VOLUME IN MEMORY OF PAOLO FRANCIA, 2002, : 277 - 287
  • [30] On Surfaces of General Type with K2=2χ –2 and Nontrivial Torsion
    Ciro Ciliberto
    Margarida Mendes Lopes
    Geometriae Dedicata, 1997, 66 : 313 - 329