Maximum likelihood estimators for generalized Cauchy processes

被引:9
|
作者
Konno, Hidetoshi [1 ]
Watanabe, Fumitoshi
机构
[1] Univ Tsukuba, Dept Risk Engn, Fac Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
[2] Tokyo Elect Power Co Ltd, R & D Ctr, Tsurumi Ku, Yokohama, Kanagawa 2308510, Japan
基金
日本学术振兴会;
关键词
D O I
10.1063/1.2800162
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum likelihood estimator (MLE) for a generalized Cauchy process (GCP) is studied with the aid of the method of information geometry in statistics. Our GCP is described by the Langevin equation with multiplicative and additive noises. The exact expressions of MLEs are given for the two cases that the two types of noises are uncorrelated and mutually correlated. It is shown that the MLEs for these two GCPs are free from divergence even in the parameter region wherein the ordinary moments diverge. The MLE relations can be regarded as a generalized fluctuation-dissipation theorem for the present Langevin equation. Availability of them and of some other higher order statistics is demonstrated theoretically and numerically. (C) 2007 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multiscale maximum penalized likelihood estimators
    Nowak, RD
    Kolaczyk, ED
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 156 - 156
  • [42] On maximum likelihood estimators for a threshold autoregression
    Qian, LF
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 75 (01) : 21 - 46
  • [43] MAXIMUM LIKELIHOOD ESTIMATORS AND A POSTERIORI DISTRIBUTIONS
    WOLFOWITZ, J
    ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04): : 643 - 644
  • [44] MAXIMUM LIKELIHOOD ESTIMATORS FOR RANKED MEANS
    DUDEWICZ, EJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (01): : 29 - &
  • [45] Analytic center and maximum likelihood estimators
    Bai, EW
    Fu, MY
    Tempo, R
    Ye, YY
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1295 - 1296
  • [46] On Regularity Conditions for Maximum Likelihood Estimators
    Gurland, John
    SKANDINAVISK AKTUARIETIDSKRIFT, 1954, 37 (1-2): : 71 - 76
  • [47] The asymptotic kurtosis for maximum likelihood estimators
    Bowman, KO
    Shenton, LR
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (11) : 2641 - 2654
  • [48] NOTE ON MAXIMUM CONDITIONAL LIKELIHOOD ESTIMATORS
    HUQUE, F
    KATTI, SK
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1976, 38 (FEB): : 1 - 13
  • [49] Performa Restricted Maximum Likelihood and Maximum Likelihood Estimators on Small Area Estimation
    Nusrang, Muhammad
    Annas, Suwardi
    Asfar
    Jajang
    2ND INTERNATIONAL CONFERENCE ON STATISTICS, MATHEMATICS, TEACHING, AND RESEARCH 2017, 2018, 1028
  • [50] Outlier-robust truncated maximum likelihood parameter estimators of generalized Pareto distributions
    Shui, Peng-Lang
    Zou, Peng-Jia
    Feng, Tian
    DIGITAL SIGNAL PROCESSING, 2022, 127