Transformation of the superconducting gap to an insulating pseudogap at a critical hole density in the cuprates

被引:6
|
作者
Liu, Ye-Hua [1 ]
Wang, Wan-Sheng [2 ,3 ,4 ]
Wang, Qiang-Hua [2 ,3 ,5 ]
Zhang, Fu-Chun [5 ,6 ]
Rice, T. M. [1 ,7 ]
机构
[1] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[5] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[7] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
关键词
2-CHAIN HUBBARD-MODEL; STATE; FLUCTUATIONS; EXCITATIONS; YBA2CU4O8; ORDERS; PHASE;
D O I
10.1103/PhysRevB.96.014522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply the recent wave-packet formalism developed by Ossadnik to describe the origin of the short-range ordered pseudogap state as the hole doping is lowered through a critical density in cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows from maximizing umklapp scattering near the Fermi energy. To this end, we show how energy gaps driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by Yang, Rice, and Zhang. The key feature is that the pairing instability includes umklapp scattering, leading to an energy gap not only in the single-particle spectrum but also in the pair spectrum. As a result the superconducting gap at overdoping is turned into an insulating pseudogap in the antinodal parts of the Fermi surface.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Pseudogap and symmetry of superconducting order parameter in cuprates
    A. A. Ovchinnikov
    M. Ya. Ovchinnikova
    E. A. Plekhanov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 356 - 369
  • [32] Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates
    Loret, B.
    Auvray, N.
    Gallais, Y.
    Cazayous, M.
    Forget, A.
    Colson, D.
    Julien, M. -H.
    Paul, I.
    Civelli, M.
    Sacuto, A.
    NATURE PHYSICS, 2019, 15 (08) : 771 - 775
  • [33] Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates
    B. Loret
    N. Auvray
    Y. Gallais
    M. Cazayous
    A. Forget
    D. Colson
    M.-H. Julien
    I. Paul
    M. Civelli
    A. Sacuto
    Nature Physics, 2019, 15 : 771 - 775
  • [34] Weak magnetism in insulating and superconducting cuprates
    De Luca, G. M.
    Ghiringhelli, G.
    Moretti Sala, M.
    Di Matteo, S.
    Haverkort, M. W.
    Berger, H.
    Bisogni, V.
    Cezar, J. C.
    Brookes, N. B.
    Salluzzo, M.
    PHYSICAL REVIEW B, 2010, 82 (21)
  • [35] Superconducting fluctuations and pseudogap in high-Tc cuprates
    Rullier-Albenque, F.
    Alloul, H.
    EURASIA-PACIFIC SUMMER SCHOOL AND CONFERENCE ON CORRELATED ELECTRONS, 2012, 23
  • [36] Pseudogap and its influence on normal and superconducting states of cuprates
    Chaudhuri, I
    Taraphder, A
    Ghatak, SK
    PHYSICA C, 2001, 353 (1-2): : 49 - 59
  • [37] Pseudogap and superconducting fluctuations in high-Tc cuprates
    Onoda, S
    Imada, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 : 32 - 38
  • [38] Spin density wave and pseudogap in HTSC cuprates
    Mazov, LS
    PHYSICS OF METALS AND METALLOGRAPHY, 2002, 93 : S137 - S141
  • [39] On the nature of the superconducting gap in the cuprates
    Quintanilla, J
    Györffy, BL
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (25) : 6591 - 6600
  • [40] Carrier relaxation, pseudogap, and superconducting gap fn high-Tc cuprates:: A Raman scattering study
    Opel, M
    Nemetschek, R
    Hoffmann, C
    Philipp, R
    Müller, PF
    Hackl, R
    Tütto, I
    Erb, A
    Revaz, B
    Walker, E
    Berger, H
    Forró, L
    PHYSICAL REVIEW B, 2000, 61 (14) : 9752 - 9774