LOWER LIMITS OF COUPLING PHYSICAL PROPERTIES OF SHALE OIL RESERVOIRS FOR THE APPLICATION OF CO2 HUFF-N-PUFF

被引:0
|
作者
Wang, Peng [1 ]
Huang, Shijun [1 ]
Zhao, Fenglan [1 ]
机构
[1] China Univ Petr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
shale oil reservoirs; CO2; huff-n-puff; lower limits of coupling physical properties; nanoconfinement; numerical simulation; RECOVERY; INJECTION; STORAGE;
D O I
10.2495/EPM220011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 flooding for enhanced shale oil recovery is unsatisfactory in pilot projects due to the fracture network complexity induced by gas channelling. CO2 huff-n-puff has been proven to improve the estimated ultimate recovery (EUR) for a single well. The purpose of this work is to determine the lower limit of coupling physical properties of shale oil reservoirs for the application of CO2 huff-n-puff technology under different economic and technological development conditions. In this work, a numerical model with two horizontal wells is established to simulate CO2 huff-n-puff process in shale oil reservoirs. Logarithmically spaced, locally refined, and dual permeability (LS-LR-DK) model is used to generate hydraulic fractures. Then, the critical shifts of hydrocarbon molecules confined in shale nanopores are corrected by a modified Soave-Redlich-Kwong equation of state (m-SRK EOS) to model the phase behaviour accurately. Subsequently, numerical simulations are conducted to investigate the influence of horizontal well length, huff-n-puff cycle, and matrix permeability on well productivity. Finally, the lower limits of coupling the permeability and initial oil saturation are determined in the economic limit output. Longer horizontal well shows a much better performance on improving single-well EUR both in the depletion and CO2 huff-n-puff stage. There is an optimum injection time for CO2 huff-n-puff under different reservoir conditions. Determining the lower limit of coupling physical properties in shale oil reservoirs is critical from the perspective of investment income. When the matrix permeability is in the range of 0.01mD to 0.1mD, the performance on improving single-well EUR of CO2 huff-n-puff is better, and it increases as the initial oil saturation increases.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 50 条
  • [41] AN EVALUATION OF CO2 HUFF-N-PUFF TESTS IN TEXAS
    HASKIN, HK
    ALSTON, RB
    JOURNAL OF PETROLEUM TECHNOLOGY, 1989, 41 (02): : 177 - 184
  • [42] Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs
    Han, Bo
    Gao, Hui
    Zhai, Zhiwei
    Wen, Xiaoyong
    Zhang, Nan
    Wang, Chen
    Cheng, Zhilin
    Li, Teng
    Wang, Deqiang
    PROCESSES, 2023, 11 (08)
  • [43] CO2 Huff-n-Puff after Surfactant-Assisted Imbibition to Enhance Oil Recovery for Tight Oil Reservoirs
    Wei, Jianguang
    Zhou, Xiaofeng
    Zhou, Jiumu
    Li, Jiangtao
    Wang, Anlun
    ENERGY & FUELS, 2020, 34 (06) : 7058 - 7066
  • [44] Increase liquid oil production by huff-n-puff of produced gas in shale gas condensate reservoirs
    Sheng, James J.
    JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES, 2015, 11 : 19 - 26
  • [45] Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures
    Sun, Runxuan
    Yu, Wei
    Xu, Feng
    Pu, Hui
    Miao, Jijun
    FUEL, 2019, 236 : 1446 - 1457
  • [46] Quantitative Evaluation of Shale-Oil Recovery during CO2 Huff-n-Puff at Different Pore Scales
    Gao, Yuan
    Li, Qi
    He, Xiaoming
    Yu, Haitang
    Wang, Yong
    ENERGY & FUELS, 2021, 35 (20) : 16607 - 16616
  • [47] Characteristics of Crude Oil Production in Microscopic Pores of CO2 Huff and Puff in Shale Oil Reservoirs
    Song, Shunyao
    Chang, Jiajing
    Guan, Quansheng
    Song, Zhaojie
    Wan, Yonggang
    Zhang, Kaixing
    Xu, Jing
    Fan, Zhaoyu
    Zhang, Yang
    Wang, Haizhu
    Liu, Xuewei
    Wang, Xiaoyan
    Ma, Zhongmei
    Energy and Fuels, 2024, 38 (05): : 3982 - 3996
  • [48] Molecular insight into minimum miscibility pressure estimation of shale oil/CO2 in organic nanopores using CO2 huff-n-puff
    Sun, Qian
    Bhusal, Aabiskar
    Zhang, Na
    Adhikari, Kapil
    CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [49] Experimental study of spontaneous imbibition and CO2 huff and puff in shale oil reservoirs with NMR
    Chen, Yukun
    Zhi, Dongming
    Qin, Jianhua
    Song, Ping
    Zhao, Hui
    Wang, Fuyong
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [50] Characteristics of Crude Oil Production in Microscopic Pores of CO2 Huff and Puff in Shale Oil Reservoirs
    Song, Shunyao
    Chang, Jiajing
    Guan, Quansheng
    Song, Zhaojie
    Wan, Yonggang
    Zhang, Kaixing
    Xu, Jing
    Fan, Zhaoyu
    Zhang, Yang
    Wang, Haizhu
    Liu, Xuewei
    Wang, Xiaoyan
    Ma, Zhongmei
    ENERGY & FUELS, 2024, 38 (05) : 3982 - 3996