Submodularity, supermodularity, and higher-order monotonicities of pseudo-boolean functions

被引:20
|
作者
Foldes, S
Hammer, PL
机构
[1] Tampere Univ Technol, Inst Math, Miami, FL 33101 USA
[2] Rutgers State Univ, Rutgers Ctr Operat Res, RUTCOR, Piscataway, NJ 08854 USA
关键词
set functions; Boolean functions; pseudo-Boolean functions; submodularity; supermodularity; discrete derivatives; Post classes; functional inequalities; functional equations; minors; local closure;
D O I
10.1287/moor.1040.0128
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Classes of set functions defined by the positivity or negativity of the higher-order derivatives of their pseudo-Boolean polynomial representations generalize those of monotone, supermodular, and submodular functions. In this paper, these classes are characterized by functional inequalities and are shown to be closed both under algebraic closure conditions and a local closure criterion. It is shown that for every m : 1, in addition to the class of all set functions, there are only three other classes satisfying these algebraic and local closure conditions: those having positive, respectively negative, mth-order derivatives, and those having a polynomial representation of degree less than m.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 50 条
  • [31] Learning Pseudo-Boolean k-DNF and Submodular Functions
    Raskhodnikova, Sofya
    Yaroslavtsev, Grigory
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1356 - 1368
  • [32] Comparing variants of MMAS ACO algorithms on pseudo-boolean functions
    Neumann, Frank
    Sudholt, Dirk
    Witt, Carsten
    [J]. ENGINEERING STOCHASTIC LOCAL SEARCH ALGORITHMS: DESIGNING, IMPLEMENTING AND ANALYZING EFFECTIVE HEURISTICS, 2007, 4638 : 61 - +
  • [33] Walsh Functions as Surrogate Model for Pseudo-Boolean Optimization Problems
    Lepretre, Florian
    Verel, Sebastien
    Fonlupt, Cyril
    Marion, Virginie
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 303 - 311
  • [34] Approximating Pseudo-Boolean Functions on Non-Uniform Domains
    Lax, R. F.
    Ding, Guoli
    Chen, Peter P.
    Chen, J.
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1754 - 1755
  • [35] Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions
    Witt, C
    [J]. EVOLUTIONARY COMPUTATION, 2006, 14 (01) : 65 - 86
  • [36] On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions
    Wegener, Ingo
    Witt, Carsten
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2005, 3 (01) : 61 - 78
  • [37] Optimal quadratic reformulations of fourth degree Pseudo-Boolean functions
    Verma, Amit
    Lewis, Mark
    [J]. OPTIMIZATION LETTERS, 2020, 14 (06) : 1557 - 1569
  • [38] Running Time Analysis of MOEA/D on Pseudo-Boolean Functions
    Huang, Zhengxin
    Zhou, Yuren
    Chen, Zefeng
    He, Xiaoyu
    Lai, Xinsheng
    Xia, Xiaoyun
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (10) : 5130 - 5141
  • [39] Symmetric approximations of pseudo-Boolean functions with applications to influence indexes
    Marichal, Jean-Luc
    Mathonet, Pierre
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1121 - 1126
  • [40] A Surrogate Model Based on Walsh Decomposition for Pseudo-Boolean Functions
    Verel, Sebastien
    Derbel, Bilel
    Liefooghe, Arnaud
    Aguirre, Hernan
    Tanaka, Kiyoshi
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT II, 2018, 11102 : 181 - 193