Anti-archimedean rings and power series rings

被引:28
|
作者
Anderson, DD [1 ]
Kang, BG
Park, MH
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Pohang Inst Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
anti-Archimedean domain; SFT Prufer domain; regular local ring; Krull domain; power series ring; valuation domain;
D O I
10.1080/00927879808826338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an integral domain D to be anti-Archimedean if boolean AND(n=1)(infinity) a(n)D not equal 0 for each 0 not equal a epsilon D. For example, a valuation domain or SFT Prufer domain is anti-Archimedean if and only if it has no height-one prime ideals. A number of constructions and stability results for anti-Archimedean domains are given. We show that D is anti-Archimedean double left right arrow D[X-l,...,X-n](D-(0)) is quasilocal and in this case D[X-l,...,X-n](D-(0)) is actually an n-dimensional regular local ring. We also show that ii D is an SFT Prufer domain, then D[{X-alpha}](lD-(0)) is a Krull domain for any set of indeterminates {X-alpha}.
引用
收藏
页码:3223 / 3238
页数:16
相关论文
共 50 条