Anti-archimedean rings and power series rings

被引:28
|
作者
Anderson, DD [1 ]
Kang, BG
Park, MH
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Pohang Inst Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
anti-Archimedean domain; SFT Prufer domain; regular local ring; Krull domain; power series ring; valuation domain;
D O I
10.1080/00927879808826338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an integral domain D to be anti-Archimedean if boolean AND(n=1)(infinity) a(n)D not equal 0 for each 0 not equal a epsilon D. For example, a valuation domain or SFT Prufer domain is anti-Archimedean if and only if it has no height-one prime ideals. A number of constructions and stability results for anti-Archimedean domains are given. We show that D is anti-Archimedean double left right arrow D[X-l,...,X-n](D-(0)) is quasilocal and in this case D[X-l,...,X-n](D-(0)) is actually an n-dimensional regular local ring. We also show that ii D is an SFT Prufer domain, then D[{X-alpha}](lD-(0)) is a Krull domain for any set of indeterminates {X-alpha}.
引用
收藏
页码:3223 / 3238
页数:16
相关论文
共 50 条
  • [1] Anti-Archimedean property and the formal power series rings
    Park, Mi Hee
    Hamed, Ahmed
    Maaref, Walid
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (08) : 3190 - 3197
  • [3] On reduced archimedean skew power series rings
    Mousavi, Hamed
    Padashnik, Farzad
    Qureshi, Ayesha Asloob
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (03)
  • [4] ARCHIMEDEAN SKEW GENERALIZED POWER SERIES RINGS
    Moussavi, Ahmad
    Padashnik, Farzad
    Paykan, Kamal
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 361 - 374
  • [5] Nilradicals of power series rings and nil power series rings
    Huh, C
    Kim, CO
    Kim, EJ
    Kim, HK
    Lee, Y
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (05) : 1003 - 1015
  • [6] KRONECKER FUNCTION RINGS AND POWER SERIES RINGS
    Chang, Gyu Whan
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2020, 12 (01) : 27 - 51
  • [7] Right Gaussian rings and skew power series rings
    Mazurek, Ryszard
    Ziembowski, Michal
    [J]. JOURNAL OF ALGEBRA, 2011, 330 (01) : 130 - 146
  • [8] Generalization of Artinian rings and the formal power series rings
    Maaref, Walid
    Hamed, Ahmed
    Benhissi, Ali
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 2199 - 2211
  • [9] Endomorphism rings, power series rings, and serial modules
    Tuganbaev A.A.
    [J]. Journal of Mathematical Sciences, 1999, 97 (6) : 4538 - 4654
  • [10] Generalization of Artinian rings and the formal power series rings
    Walid Maaref
    Ahmed Hamed
    Ali Benhissi
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2199 - 2211