Particle Tracking Velocimetry for indoor airflow field: A review

被引:45
|
作者
Fu, Sijie [1 ]
Biwole, Pascal Henry [1 ]
Mathis, Christian [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Dept Math & Interact, Lab JA Dieudonne,UMR 7351, F-06108 Nice, France
关键词
Particle Tracking Velocimetly (PTV); Indoor airflow; Measurement; Particle Streak Velocimetry (PSV); HYBRID VENTILATION; IMAGE VELOCIMETRY; EXPERIMENTAL VALIDATION; NATURAL VENTILATION; AIRCRAFT CABINS; PERFORMANCE; SYSTEM; MODEL; ENVIRONMENT; STRATEGIES;
D O I
10.1016/j.buildenv.2015.01.014
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Airflow field measurement plays a significant role in creating a thermally comfortable indoor environment, by providing adequate quantitative information of indoor air distribution and local air velocity. In recent years, the Particle Tracking Velocimetry (PTV) technique has gradually become a promising and powerful tool for indoor airflow field measurement. This paper firstly gives an overview of the equipments and methods involved in typical PTV applications to indoor environments, and then introduces related applications of PTV for measuring indoor airflow fields. The Particle Streak Velocimetry (PSV) technique for indoor airflow measurement is also introduced. This paper shows how the quantitative and detailed turbulent flow information obtained by PTV measurement is critical for analyzing turbulent properties and developing numerical simulations. The limitations and future developments of PTV and PSV techniques are also discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 50 条
  • [41] An improved particle tracking velocimetry (PTV) technique to evaluate the velocity field of saltating particles
    Chanwen Jiang
    Zhibao Dong
    Xiaoyan Wang
    [J]. Journal of Arid Land, 2017, 9 : 727 - 742
  • [42] Holographic astigmatic particle tracking velocimetry (HAPTV)
    Zhou Zhou
    Santosh, Kumar S.
    Mallery, Kevin
    Jiang Wensheng
    Hong, Jiarong
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (06)
  • [43] Comparison of stereoscopic particle image velocimetry and volumetric particle tracking velocimetry in the wake of a ducted propeller
    Friedhoff, B.
    Roettig, F.
    Wennemar, K.
    Hoyer, K.
    Beslac, R.
    Hesseling, C.
    Beck, T.
    [J]. OCEAN ENGINEERING, 2021, 234 (234)
  • [44] On the calibration of astigmatism particle tracking velocimetry for microflows
    Cierpka, C.
    Rossi, M.
    Segura, R.
    Kaehler, C. J.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (01)
  • [45] NEW TRACKING ALGORITHM FOR PARTICLE IMAGE VELOCIMETRY
    OKAMOTO, K
    HASSAN, YA
    SCHMIDL, WD
    [J]. EXPERIMENTS IN FLUIDS, 1995, 19 (05) : 342 - 347
  • [46] A recursive interpolation algorithm for particle tracking velocimetry
    Ido, Takehiro
    Murai, Yuichi
    [J]. FLOW MEASUREMENT AND INSTRUMENTATION, 2006, 17 (05) : 267 - 275
  • [47] Particle Tracking Velocimetry Using the Genetic Algorithm
    Ohmi, K.
    Panday, S. P.
    [J]. JOURNAL OF VISUALIZATION, 2009, 12 (03) : 217 - 232
  • [48] Particle Tracking Velocimetry using the genetic algorithm
    K. Ohmi
    S. P. Panday
    [J]. Journal of Visualization, 2009, 12 : 217 - 232
  • [49] Particle-tracking velocimetry with new algorithm
    Ohmi, K
    Li, HY
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2000, 11 (06) : 603 - 616
  • [50] A hybrid digital particle tracking velocimetry technique
    Cowen, EA
    Monismith, SG
    [J]. EXPERIMENTS IN FLUIDS, 1997, 22 (03) : 199 - 211