Crystal structure of the SFCAM phase Ca2(Ca,Fe,Mg,Al)6(Fe,Al,Si)6O20

被引:53
|
作者
Sugiyama, K [1 ]
Monkawa, A [1 ]
Sugiyama, T [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
crystal structure; sinter ore; aenigmatite; X-ray diffraction; SFCAM;
D O I
10.2355/isijinternational.45.560
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The crystal structures of Mg-rich SFCA (SFCAM); Ca-2(Ca0.10Mg1.20Fe5.55Si1.50Al3.65)O-20 (triclinic P (1) over bar, a = 8.848(1) angstrom, b = 9.812(1) angstrom, c = 10.403(1) angstrom, alpha = 64.35(1)degrees, beta = 84.19(1)degrees, gamma = 66.27(1)degrees, V = 742.4(1) angstrom(3), Z = 2) and Ca-2(Mg2.00Fe4.45Si2.15Al3.40)O-20 (triclinic P (1) over bar, a = 8.928(2) angstrom, b = 9.823(2) angstrom, c = 10.389(1) angstrom, alpha = 64.41 (1)degrees, beta = 83.90 (1)degrees, gamma = 65.69 (1)degrees, V = 746.0 (2) angstrom(3), Z = 2) were determined by the single crystal X-ray diffraction. The structure of SFCAM is iso-structural with aenigmatite and well demonstrated by an alternating stacking of the tetrahedral and octahedral layers. The tetrahedral sites of oxygen are occupied either by Fe, Al and Si. The octahedral sites of oxygen are occupied either by Fe, Mg and Al and this feature contrasts with that of the Mg-free SFCA phase where Al prefers tetrahedral sites, only. In particular, Si4+ and Mg2+ prefer the tetrahedral T1, T2 and T4 sites and octahedral M5 and M6 sites, respectively, by producing a structural slab similar to that of aluminous diopside. Such local concentration of divalent Mg2+ and tetravalent Si4+ in the structure of SFCAM is strongly favored in order to compensate the local charge valance. The SFCAM phase indicates the superior structural flexibility for a variety of cations and this feature is promising for the chemical design of the bonding phase in the sinter ore.
引用
收藏
页码:560 / 568
页数:9
相关论文
共 50 条
  • [31] Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family
    R. K. Rastsvetaeva
    S. M. Aksenov
    Crystallography Reports, 2012, 57 : 375 - 380
  • [32] Crystal Structure of Monoclinic Sr2.4Ca0.6Al2O6
    Kaduk, James A.
    Wong-Ng, Winnie
    Golab, Joseph T.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C675 - C675
  • [33] CRYSTAL-STRUCTURE OF TRICALCIUM ALUMINATE, CA3AL2O6
    MONDAL, P
    JEFFERY, JW
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1975, 31 (MAR15): : 689 - +
  • [34] INTRASUBLATTICE ANTIFERROMAGNETISM IN CA2[FE] (FE)O5
    GELLER, S
    GRANT, RW
    GONSER, U
    WIEDERSICH, H
    ESPINOSA, GP
    PHYSICS LETTERS, 1966, 20 (02): : 115 - +
  • [35] SUBSTITUTIONS IN CA-2NA-6AL-6SI-6O-24SO-4(2) HAUYNE STRUCTURE
    NEURGAONKAR, RR
    HUMMEL, FA
    MATERIALS RESEARCH BULLETIN, 1976, 11 (01) : 61 - 65
  • [36] Phase Composition, Structure, and Hardening of Alloys Containing 6% (Ca + Si) in the System Al–Ca–Si–Zr–Sc
    N. A. Belov
    E. A. Naumova
    V. V. Doroshenko
    N. O. Korotkova
    Physics of Metals and Metallography, 2018, 119 : 1184 - 1190
  • [37] The structure of vesuvianite Ca10Al4(Mg,Fe)(2)Si9O34(OH)(4)
    Warren, BE
    Modell, DI
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1931, 78 (5/6): : 422 - 432
  • [38] THERMODYNAMICS OF THE CA-MG-FE-AL-SI-O PYROXENES .1. THEORETICAL-MODEL AND ASSESSMENT OF THE CA-MG-SI-O SYSTEM
    SHI, PF
    SAXENA, SK
    ZHANG, ZR
    SUNDMAN, B
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1994, 18 (01): : 47 - 69
  • [39] The structure of Melilite (Ca,Na)(2)(Mg, Al)(1)(Si, Al)(2)O-7.
    Warren, BE
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1930, 74 (02): : 131 - 138
  • [40] THERMOCHEMISTRY OF GLASSES ALONG JOINS OF PYROXENE STOICHIOMETRY IN THE SYSTEM CA2SI2O6-MG2SI2O6-AL4O6
    HERVIG, RL
    SCOTT, D
    NAVROTSKY, A
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1985, 49 (07) : 1497 - 1501