Energy and exergy analysis of the zinc/zinc oxide thermochemical cycle for hydrogen production and fuel cell power generation

被引:27
|
作者
Murmura, Maria Anna [1 ]
Vilardi, Giorgio [1 ]
机构
[1] Sapienza Univ Rome, Dept Chem Engn Mat Environm, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Exergy; Process simulation; Thermochemical-cycle; Irreversibility; CHEMICAL EXERGY; KINETICS; ZINC;
D O I
10.1016/j.enconman.2021.114761
中图分类号
O414.1 [热力学];
学科分类号
摘要
Water-splitting thermochemical cycles have emerged as a possible solution for the decentralized production of hydrogen using solar energy. A useful tool to select the most promising thermochemical cycles among those proposed in the literature is represented by the exergy analysis. In this context, the exergy and energy analyses of the zinc/zinc oxide thermochemical water-splitting cycle, coupled with the production of electrical energy in a fuel cell, are here carried out and discussed. The aim has been to identify the steps in the process characterized by the highest inefficiencies and to propose possible solutions to increase the overall thermodynamic efficiency. Calculations were carried out using the commercial process simulator PRO/II. The cycle consists of two steps: (i) the endothermic thermal reduction of solid zinc oxide to liquid zinc and oxygen, carried out in a solar thermoreactor at 2025 degrees C, and (ii) the non-solar, exothermic hydrolysis of zinc to form hydrogen and solid zinc oxide. This work reports three possible process schemes based on the zinc/zinc oxide redox reactions, each differing from the others in terms of envisaged modes of heat recovery. In addition, the effect of carrying out the hydrolysis step under adiabatic, rather than isothermal conditions, has been analysed. Four values of conversion were considered (1, 0.9. 0.8, and 0.7) and the effect on fuel cell power generation, utility consumption, and energy and exergy efficiency was evaluated. It was found that the exergy efficiency increased from about 14% for the classical zinc/zinc oxide cycle to almost 40% in the most efficient scenario considered here. The variation of hydrogen conversion in the fuel cell led to a decrease in generated power, from 16.41 MW at hydrogen conversion of 1 down to 11.48 MW at conversion of 0.7.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Energy and exergy analysis of simple solid-oxide fuel-cell power systems
    Chan, SH
    Low, CF
    Ding, OL
    JOURNAL OF POWER SOURCES, 2002, 103 (02) : 188 - 200
  • [22] Energy, exergy and economic analysis of an integrated solid oxide fuel cell - gas turbine - organic Rankine power generation system
    Eveloy, Valerie
    Karunkeyoon, Wirinya
    Rodgers, Peter
    Al Alili, Ali
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (31) : 13843 - 13858
  • [23] Energy and exergy based performance analyses of a solid oxide fuel cell integrated combined cycle power plant
    Gogoi, T. K.
    Sarmah, P.
    Nath, D. Deb
    ENERGY CONVERSION AND MANAGEMENT, 2014, 86 : 507 - 519
  • [24] Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle
    Ishak, F.
    Dincer, I.
    Zamfirescu, C.
    JOURNAL OF POWER SOURCES, 2012, 212 : 73 - 85
  • [25] Exergy transfer and degeneration in thermochemical cycle reactions for hydrogen production: Novel exergy- and energy level-based methods
    Jiao, Fan
    Lu, Buchu
    Chen, Chen
    Liu, Qibin
    ENERGY, 2021, 219
  • [26] Manganese oxide based thermochemical hydrogen production cycle
    Kreider, Peter B.
    Funke, Hans H.
    Cuche, Kevin
    Schmidt, Michael
    Steinfeld, Aldo
    Weimer, Alan W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (12) : 7028 - 7037
  • [27] Energy, exergy analysis in a hybrid power and hydrogen production system using biomass and organic Rankine cycle
    Budovich L.S.
    International Journal of Thermofluids, 2024, 21
  • [28] Energy and exergy analysis of dry and steam external reformers for a power cycle based on biogas-fueled solid oxide fuel cell
    Soleimanpour, Mohammad
    Ebrahimi, Masood
    ENERGY, 2024, 305
  • [29] Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage
    Karasavvas, Evgenios
    Panopoulos, Kyriakos D.
    Papadopoulou, Simira
    Voutetakis, Spyros
    RENEWABLE ENERGY, 2020, 154 : 743 - 753
  • [30] The oxygen production step of a copper-chlorine thermochemical water decomposition cycle for hydrogen production: Energy and exergy analyses
    Orhan, Mehmet F.
    Dincer, Ibrahim
    Rosen, Marc A.
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (05) : 860 - 869